跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡致維
Jhih-Wei Hu
論文名稱: 旋轉塗佈摻雜溶液之擴散製程探討及其應用 於製備太陽能電池
Development of silicon solar cells using spin-on dopants
指導教授: 陳一塵
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 旋轉塗佈摻雜溶液之擴散製程探討及其應用 於製備太陽能電池
外文關鍵詞: Development of silicon solar cells using spin-on dopants
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源問題日漸受到大家重視,為了供給足夠的能源來因應人類的需求,然而許多能源都需要嚴重的代價如環境污染;而太陽能電池為一潛力再生能源之一。為了降低太陽能成本及有效增加太陽能效率,本篇用磷酸、硼酸作為擴散源;傳統POCl3和BBr3為典型擴散常用的溶液;三溴化硼(BBr3)、氧氯化磷(POCl3)皆為劇毒且BBr3具有自燃的特性,因此本篇利用硼酸(H3BO3)、磷酸(H3PO4)在去離子(DI)水的稀釋下,進行高溫擴散並討論擴散後的特性,期望利用廉價和無毒性替代了傳統的硼擴散源。
    我們利用硼酸溶液和磷酸溶液作為擴散源,並經由高溫擴散在矽基板,探討在高溫下的去疵效果、片電阻、擴散深度;其中硼酸濃度在(0.5-6wt%)作高溫擴散;而磷酸(0.1-3.5 vol%),經由WCT-120量測少數載子壽命、暗示電壓和霍爾分析量測片電阻。硼酸溶液(〜0.5-6wt%)、磷酸溶液(〜0.1-3.5vol%)作為高溫擴散後有廣泛的片電阻(〜4 - 20Ω/sq)、(~5 - 40Ω/sq)。此外我們選定做一固定溶液濃度下進行不同溫度擴散(850℃~1050℃),得到最佳吸附雜質的擴散溫度。
    最後我們結合不同條件,將研究結果應用在單晶N型矽太陽能電池上,目前初步得到太陽能電池轉換效率(η) = 13.13 %;開路電壓(Voc ) = 580.40mV;短路電流(Jsc) = 34.07 mA/cm2;填充因子(FF) = 65 %。


    In this thesis, dilute spin-on solutions of boric acid and phosphoric acid in de-ionized (DI) water, low-cost and non-toxic alternative to more conventional boron diffusion sources like boron tribromide (BBr3) which are toxic and pyrophoric. It was found that boron emitters with a wide range sheet resistances (~4 – 20 Ω/sq.) could be achieved with very dilute boric acid sources (~0.5-6 wt.% boric acid in DI water) by controlling the diffusion time and temperature.
    We have studied the application of annealing processing for boron and phosphorus diffusion using spin-on dopants (SODs). For the diffusion, an extended gettering process, both P and B diffusion at 850oC、900oC、950oC、1000oC、1050oC followed by in-situ gettering at different temperature for one hour, gave better lifetime values than the standard gettering for all compensation levels. The lifetime of highly compensated materials were increased significantly by such an extended gettering process. Cell efficiency up to 11.9 % has been achieved on 1x1cm2 cells with the boron emitter and the phosphorus BSF formed with boric acid and phosphoric acid, respectively.
    Finally, we fabricate monocrystalline N-type silicon solar cell get the optimized result, and there we have the electro-optic convert efficiency = 13.13%, the open-circuit voltage (Voc) = 580.40 mV, short-circuit current density (Jsc) = 34.07 mA/cm2, and the fill factor (FF) = 65%.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1前言 1 1-2研究背景與動機 3 第二章 文獻回顧 7 2-1太陽能電池介紹 7 2-1-1 太陽能電池分類 7 2-2 太陽能電池基本原理 8 2-2-1 太陽光光譜 9 2-2-2太陽能電池的重要參數 10 2-3 太陽能電池複合機制 14 2-3-1 輻射複合 (Radiative Recombination) 15 2.3-2 歐傑復合 (Auger Recombination) 15 2-3-3 夏克禮-里德-霍爾 (Shockley-Read-Hall)復合 17 2-3-4 表面復合 (surface recombination) 18 2-4雜質擴散 19 2-4-1 擴散機制 19 2-4-2 擴散方程式 21 2-4-3去疵法(Gettering) 22 2-3-4 磷擴散去疵法 23 2-4-2 高溫硼擴散與少數生命載子壽命 24 第三章 實驗步驟 28 3-1 摻雜溶液擴散流程 29 3-1-1製備SIMS試片 29 3-1-2不同摻雜溶液流程 30 3-1-3不同擴散溫度流程 31 3-2 太陽能電池製備流程 33 3-4 儀器分析 34 第四章 實驗結果與討論 35 4-1 擴散溫度與縱向深度分析 35 4-2去疵效果與電性分析 37 4-2-1磷酸濃度的探討 37 4-2-2硼酸摻雜濃度的探討 38 4-2-3磷摻雜溫度的探討 39 4-2-4硼摻雜溫度的探討 41 4-3 摻雜溶液製備太陽能電池 42 4-3-1 射極擴散製程探討 42 4-3-2 背表面擴散製程探討 45 第五章 結論 48 參考文獻 49

    [1]International Institurte for Applied Systems Analysis, 2012.
    [2]"Gloable warning science", Union of Concerned Scientists,2013
    [3]Paul Maycock, Bloomberg New Energy Finance, 2013
    [4] D. S. Kim, "Development of a Phosphorus Spray Diffusion System for Low-Cost Silicon Solar Cells", Journal of The Electrochemical Society, 153(7), A1391-A1396, 2006,
    [5] S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost photovoltaics", Solar Energy Materials & Solar Cells, Vol. 94, pp. 1528-1533, 2010
    [6]Daniel Macdonald, "PHOSPHORUS GETTERING IN MULTICRYSTALLINE SILICON STUDIED BY NEUTRON ACTIVATION ANALYSIS", IEEE, vol.2, 0-7803-7471-1, 2002
    [7] V. D. Mihailetchi, “Screen printed n-type silicon solar cells for industrial application,” in Proc. 25th Eur. Photovoltaic Sci. Eng. Conf., pp. 1446–1448, 2010.
    [8]Izete Zanesco," Development and Comparison of Small and Large Area Boron Doped
    Solar Cells in n-type and p-type Cz-Si", IEEE, 2011, 6, 978-1-4673-0066, 2011.
    [9] Gajendra Singh, Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field" , The Royal Society of Chemistry, 4, 4225–4229, 2014.
    [10] LIBAL, J., et al., “Record efficiencies of solar cells based on n-type multi crystalline silicon”, In:Proceedings of the 22th European Photovoltaic Solar Energy Conference, pp. 1382-1386, Milão,Sep. 2007.
    [11] J. Y. Lee and S. W. Glunz, “Boron-back surface field with spin-on dopants by rapid thermal processing,” in Proc. 19 th EU-PVSEC, pp. 998-1001, 2004.
    [12] G. Bueno, “Simultaneous Diffusion of Screen Printed Boron and Phosphorous Paste for Bifacial Silicon Solar Cells,” in Proc. 20 th EU-PVSEC, pp. 1458-1461, 2005.
    [13] PV News, Paul Maycock, 1997.
    [14] European Photovoltaic Industry Association, 2010.
    [15] European Photovoltaic Industry Association, 2014.
    [16] A. Richter,“Improved parameterization of Auger recombination in silicon”, Energy Procedia, vol. 27, pp. 88-94, 2012
    [17]Schimpe, R., Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv
    Fur Elektronik Und Ubertragungstechnik-International Journal of Electronics and Communications. 46(2): p. 80-85, 1992.
    [18]Sharma, S.K., et al., Determination of solar-cell parameters - an analytical approach.
    Journal of Physics D-Applied Physics. 26(7): p. 1130-1133, 1993.
    [19] A. Richter, F. Werner, A. Cuevas, J. Schmidt, and S. Glunz, et al., “Improved parameterization of auger recombination in silicon”, Energy
    Procedia, vol. 27, pp. 88-94, 2012.
    [20]Choi, S.J., et al., The electrical properties and hydrogen passivation effect in monocrystalline silicon solar cell with various pre-deposition times in doping process.Renewable Energy, 2013. 54: p. 96-100.
    [21]M. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics,Vol. 91, pp. 2473-2481, 2002.
    [22]W. Shockley and W. Read, “Statistics of the recombinations of holes and electrons”, Physical Review,Vol. 87, pp. 835–842, 1952.
    [23] R. Hall, “Electron-hole recombination in germanium”, Physical Review, Vol. 87, pp. 387–387, 1952.
    [24] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R.
    Alcubilla et al., “Crystalline silicon surface passivation with amorphous SiCx:H
    films deposited by plasma-enhanced chemical-vapor deposition”, Journal of
    Applied Physics, Vol. 98, pp. 114912-114921, 2005.
    [25]M. Kerr and A. Cuevas, “General parameterization of auger recombination in crystalline silicon”, Journal of Applied Physics,Vol. 91, pp. 2473-2481, 2002.
    [26]S. Dauwe, Low-temperature surface passivation of crystalline Silicon and its application to the rear side of solar cells, harderberg, 2004.
    [27]Hyomin Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“, International Journal of Photoenergy.Article ID 794876, 7 pages, 2012
    [28]Gajendra Singh et al, “Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field“, The Royal Society of Chemistry, Vol.4 , pp. 4225–4229, 2014
    [29] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering, 2012
    [30]Peter J, "The influence of diffusion-Induced dislocations on high efficiency silicon solar cells", IEEE Transactions on electron devices, VOL. 53, NO. 3 , 2006.
    [31]F.Gaisean, "Analysis of the generation of the misfit dislocations during the boron prediffusion in silicon", Proc. SPIE Conf. Process, Equipment, Mater. Control Integr. Circuit Manufact. IV, pp. 281-285, 1998.
    [32]M.Oriowski, "Unified model for impurity diffusion in silicon", Appl.Phys.Lett, 53(14), 1988.
    [33]R.W. Gregor,"Studies of effective gettering techniques using segregation annealing for complementary metal-oxide-semiconductor technologies", J.Appl.Phys, 64(4),1988.
    [34]S. Bowden," Implied-Voc and suns-Voc measurements in multicrystalline solar cella", IEEE , 371 - 374, 2002

    QR CODE
    :::