| 研究生: |
施柏全 Po-Chan Shih |
|---|---|
| 論文名稱: |
移動式電阻抗斷層攝影術量測系統設計 Design of the Movable Electrical Impedance Tomography System |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 電阻抗斷層攝影術 、移動式電阻抗斷層攝影術 、人機介面 、影像重建 、有限元素法 、牛頓拉夫遜法 、鎖相 |
| 外文關鍵詞: | MEIT, GUI, image reconstruction, finite element method, Newton Raphson, lock in, electrical impedance tomography |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文之目的,在於設計移動式電阻抗斷層攝影術量測系統(MEIT)配合有限元素法以及修正式牛頓拉夫遜法,估算生物組織內部的阻抗分佈情形。MEIT系統設計包括資料擷取系統、馬達控制驅動電路、穩壓器、定電流源、解調器、電極選用、以及電極的配置等;軟體部分則是以Labview 圖控軟體設計人機介面(GUI),GUI中包括自動量測介面、手動測試量測介面以及馬達驅動測試介面。
MEIT系統的特色是改善目前EIT系統在量測時因電極數目過多且無法在增加電極數目的狀況下,以移動電極的方式來提高電極的數目,並進一步提昇阻抗影像的品質。實驗的結果中得知,雖然由固定式量測所建立的6組個別影像可以估測出待測物體的位置,並且可觀察出待測物因電極轉動所產生不同像素值的變化,但是個別影像卻受到雜訊的影響使得影像的清晰度不高,因此本研究將6組個別影像重新做平均合成,或利用此6組數據再建立更高解析度之圖形,可得知經由合成後的影像清晰度會大幅提高,並同時消除雜訊在影像中的影響。
雖然MEIT系統尚在研究發展的階段,然而重新合成後的影像可發現,影像中的清晰度已經明顯的提高且待測物位置也能清楚地指出,擴展電極數所合成之影像更可明確的看出影像位置。因此,驗證出利用移動式電極擴展量測資料到高品質的阻抗影像圖形是可行的。
In this paper, the principal purpose is to develop a novel imaging system, which is named Movable Electrical Impedance Tomography (MEIT). The MEIT system estimates the distribution of the internal conductance of the tissue by the finite element methods (FEM) and the modified Newton-Raphson. The Design of the MEIT system contains of the data collection system, the stepping motor circuit, the voltage control current source (VCCS), and the electrodes configuration. For part of the software, the Graphical User Interface (GUI) which is developed by Labview, consists of automatic measurement, manual measurement and motor test interfaces.
In order to improve the resolution of image from the traditional EIT system which was limited by the number of electrodes, the MEIT system can obtain more amount of measuring data after moving the electrodes. Although the reconstruction results show that the six individual images constructed by the static electrodes could detect the position of the object approximately, some of the individual images were perturbed by the noise. So the MEIT system synthesizes the six individual images to a combined image and high-resolution image. These new images display clearly an imaging object and the eliminated noise simultaneously.
Although the MEIT system is still under development, the combined images could indicate the position of object obviously. Therefore, the MEIT system provides a feasibility to reconstruct a high quality impedance image by moving electrodes.
[1] B. H. Brown and A. D. Seagar, "The Sheffield data collection system," Clinical Phys-ics and Physiological Measurement, vol. 8, no. 4A, p. 91, 1987.
[2] Z. Szczepanik and Z. Rucki, "Frequency analysis of electrical impedance tomography system," Instrumentation and Measurement, IEEE Transactions on, vol. 49, no. 4, pp. 844-851, 2000.
[3] D. M. Jones, R. H. Smallwood, D. R. Hose, and B. H. Brown, "Constraints on tetrapolar tissue impedance measurements," Electronics Letters, vol. 37, no. 25, pp. 1515-1517, 2001.
[4] Todd E Kerner, H. Alex, K. S. Osterman, D. Christine, and D. P. Keith, "An improved data acquisition method for electrical impedance tomography," Physiological Meas-urement, vol. 22, no. 1, p. 31, 2001.
[5] R. C. Waterfall, R. He, and C. M. Beck, "Visualizing combustion using electrical im-pedance tomography," Chemical Engineering Science, vol. 52, no. 13, pp. 2129-2138, 1997.
[6] R. H. Smallwood, A. R. Hampshire, B. H. Brown, R. A. Primhak, S. Marven, and P. Nopp, "A comparison of neonatal and adult lung impedances derived from EIT im-ages," Physiological Measurement, vol. 20, no. 4, p. 401, 1999.
[7] D. Holder, "Electrical impedance tomography of brain function: its potential advan-tages for imaging epileptic activity," 1998, pp. 7-1-7/5.
[8] T. E. Kerner, K. D. Paulsen, A. Hartov, S. K. Soho, and S. P. Poplack, "Electrical im-pedance spectroscopy of the breast: clinical imaging results in 26 subjects," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 638-645, 2002.
[9] R. J. Yerworth, R. H. Bayford, B. Brown, P. Milnes, M. Conway, and D. S. Holder, "Electrical impedance tomography spectroscopy (EITS) for human head imaging," Physiological Measurement, vol. 24, no. 2, p. 477, 2003.
[10] V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, K. Yu, A. Mazaletskaya, and D. Mazourov, "Preliminary static EIT images of the thorax in health and disease," Physiological Measurement, vol. 23, no. 1, p. 33, 2002.
[11] B. M. Eyuboglu, B. H. Brown, and D. C. Barber, "Problems of cardiac output deter-mination from electrical impedance tomography scans," Clinical Physics and Physio-logical Measurement, vol. 9, no. 4A, p. 71, 1988.
[12] D. M. Otten and B. Rubinsky, "Cryosurgical monitoring using bioimpedance meas-urements-a feasibility study for electrical impedance tomography," Biomedical Engi-neering, IEEE Transactions on, vol. 47, no. 10, pp. 1376-1381, 2000.
[13] H. S. Tapp and R. H. Wilson, "Developments in low-cost electrical imaging tech-niques," Process Control and Quality, vol. 9, no. 1-3, pp. 7-16, 1997.
[14] L. Michael, M. Peter, and P. Michael, "Tikhonov regularization for electrical imped-ance tomography on unbounded domains," Inverse Problems, vol. 19, no. 3, p. 585, 2003.
[15] M. Wang, W. Yin, and N. Holliday, "A highly adaptive electrical impedance sensing system for flow measurement," Measurement Science and Technology, vol. 13, no. 12, p. 1884, 2002.
[16] V. A. Cherepenin, A. Y. Karpov, A. V. Korjenevsky, V. N. Kornienko, Y. S. Kultiasov, M. B. Ochapkin, O. V. Trochanova, and J. D. Meister, "Three-dimensional EIT imag-ing of breast tissues: system design and clinical testing," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 662-667, 2002.
[17] A. T. Hughes, P. Liu, H. Griffiths, B. W. Lawrie, and C. M. Wiles, "An analysis of studies comparing electrical impedance tomography with X-ray videofluoroscopy in the assessment of swallowing," Physiological Measurement, vol. 15, no. 2A, p. A199, 1994.
[18] M. J. Booth and I. Basarab-Horwath, "Comparing electrode configurations for elec-trical impedance tomography," Electronics Letters, vol. 32, no. 7, pp. 648-649, 1996.
[19] C. S. Koukourlis, G. A. Kyriacou, and J. Sahalos, "A 32-electrode data collection sys-tem for electrical impedance tomography," Biomedical Engineering, IEEE Transac-tions on, vol. 42, no. 6, pp. 632-636, 1995.
[20] O. Casas, J. Rosell, R. Brag, s, A. Lozano, and P. J. Riu, "A parallel broadband real-time system for electrical impedance tomography," Physiological Measurement, vol. 17, no. 4A, p. A1, 1996.
[21] J. Rosell, P. Riu, and R. Pallas-Areny, "A parallel data acquisition system for electrical impedance tomography," 1989, pp. 459-460.
[22] J. Rosell, D. Murphy, R. Pallas, and P. Rolfe, "Analysis and assessment of errors in a parallel data acquisition system for electrical impedance tomography," Clinical Phys-ics and Physiological Measurement, vol. 9, no. 4A, p. 93, 1988.
[23] Alexander S Ross, G J Saulnier, and J C Newell1 and D Isaacson, "Current source design for electrical impedance tomography," Physiological Measurement, no. 2, pp. 509-516, 2003.
[24] T. Dudykevych, E. Gersing, F. Thiel, and G. Hellige, "Impedance analyser module for EIT and spectroscopy using undersampling," Physiological Measurement, vol. 22, no. 1, p. 19, 2001.
[25] M. Osypka and E. Gersing, "Tissue impedance spectra and the appropriate frequen-cies for EIT," Physiological Measurement, vol. 16, no. 3A, p. A49, 1995.
[26] H. Griffiths, "A Cole phantom for EIT," Physiological Measurement, vol. 16, no. 3A, p. A29, 1995.
[27] A. M. Shallof and D. C. Barber, "Tissue characterisation using a multi-frequency of electrical impedance tomography," 1996, pp. 2-1-2/4.
[28] J. C. Faes, H. A. van der Meij, J. C. de Munck, and R. M. Heethaar, "The electric re-sistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies," Physiological Measurement, vol. 20, no. 4, p. R1, 1999.
[29] Biomedical Imaging 2003.
[30] E. Gersing, W. Kruger, M. Osypka, and P. Vaupel, "Problems involved in temperature measurements using EIT," Physiological Measurement, vol. 16, no. 3A, p. A153, 1995.
[31] Rangaraj M.Rangayyan, Biomedical Signal Analysis 2005.
[32] Sverre Grimnes and MSc PhD, BIOIMPEDANCE AND BIOELECTRICITY BASICS 2005.
[33] J G Webster, Electrical Impedance Tomography 2005.
[34] B. Brown, "Electrical impedance tomography (EIT): a review.," Journal of Medical Engineering & Technology; May2003, Vol. 27 Issue 3, p97, 12p, vol. 27, no. 3, pp. p97-12p, 2003.
[35] L. E. Baker, "Principles of the impedance technique," Engineering in Medicine and Biology Magazine, IEEE, vol. 8, no. 1, pp. 11-15, 1989.
[36] Kevin Hugo, Mat Klein, Susanne Clark Cazzanti, Jang-Zern Tsai, Shilpa Sawale, Hong Cao, Jorge E.Monzon, Jeffery S.Schowalter, Supan Tungjitkusolmun, and Chao-Min Wu, Bioinstrumentation 2005.
[37] V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, A. Mazaletskaya, D. Ma-zourov, and D. Meister, "A 3D electrical impedance tomography (EIT) system for breast cancer detection," Physiological Measurement, vol. 22, no. 1, p. 9, 2001.
[38] R. W. M. Smith, I. L. Freeston, and B. H. Brown, "A real-time electrical impedance tomography system for clinical use-design and preliminary results," Biomedical En-gineering, IEEE Transactions on, vol. 42, no. 2, pp. 133-140, 1995.
[39] M. A. Oliver, I. Gobantes, J. Arnau, J. Elvira, P. Riu, N. Grebol, and J. M. Monfort, "Evaluation of the electrical impedance spectroscopy (EIS) equipment for ham meat quality selection," Meat Science, vol. 58, no. 3, pp. 305-312, 2001.
[40] D. S. Holder and A. Khan, "Use of polyacrylamide gels in a saline-filled tank to de-termine the linearity of the Sheffield Mark 1 electrical impedance tomography (EIT) system in measuring impedance disturbances," Physiological Measurement, vol. 15, no. 2A, p. A45, 1994.
[41] A. J. Wilson, P. Milnes, A. R. Waterworth, R. H. Smallwood, and B. H. Brown, "Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system," Physio-logical Measurement, vol. 22, no. 1, p. 49, 2001.
[42] M. W. Robert, M. S. David, S. Gregg, K. Jacek, H. Lasse, V. Marko, Brian S Hoyle, H. I. Schlaberg, H. Ruozhou, and A. W. Richard, "<I>In situ</I> imaging of paste extru-sion using electrical impedance tomography," Measurement Science and Technology, vol. 13, no. 12, p. 1890, 2002.
[43] A. Michel, L. Orah, M. Dov, M. David, N. Udi, N. Ron, and S. Abraham, "The T-SCAN<iopmath latex="$^{
m TM}$"><SUP>TM</SUP></iopmath> technology: electrical impedance as a diagnostic tool for breast cancer detection," Physiological Measurement, vol. 22, no. 1, p. 1, 2001.
[44] "http://www.transscan.co.il/eis.asp," 2005.
[45] Ö, B. zlem, l, B. M. Ey, boglu, and Y. Z. Ider, "Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with dif-ferent probing current patterns," Physics in Medicine and Biology, vol. 48, no. 5, p. 653, 2003.
[46] A. R. Zapata-Ferrer, G. Gastro, G. Gaona, M. A. Aguillon, F. Rosell, and B. Carrera, "Electrical impedance tomography: an electronic design, with adaptive voltage meas-urements and a phantom circuit for research in the epilepsy field,", 2 ed 1997, pp. 867-868.
[47] R. D. Cook, G. J. Saulnier, D. G. Gisser, J. C. Goble, J. C. Newell, and D. Isaacson, "ACT3: a high-speed, high-precision electrical impedance tomograph," Biomedical Engineering, IEEE Transactions on, vol. 41, no. 8, pp. 713-722, 1994.
[48] Roberto E Serrano, d. L. Bruno, C. Oscar, F. Teresa, C. Nuria, C. Valle, C. Ignasi, C. Pere, J. Sanchis, and J. R. Pere, "Use of electrical impedance tomography (EIT) for the assessment of unilateral pulmonary function," Physiological Measurement, vol. 23, no. 1, p. 211, 2002.
[49] R. J. Yerworth, R. H. Bayford, G. Cusick, M. Conway, and D. S. Holder, "Design and performance of the UCLH Mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function," Physiological Measurement, vol. 23, no. 1, p. 149, 2002.
[50] N. Chauveau, B. Ayeva, B. Rigaud, and J. P. Morucci, "A multifrequency serial EIT system," Physiological Measurement, vol. 17, no. 4A, p. A7, 1996.
[51] J. H. Li, C. Joppek, and U. Faust, "Fast EIT data acquisition system with active elec-trodes and its application to cardiac imaging," Physiological Measurement, vol. 17, no. 4A, p. A25, 1996.
[52] Q. S. Zhu, C. N. McLeod, C. W. Denyer, F. J. Lidgey, and R. B. Lionheart, "Devel-opment of a real-time adaptive current tomograph," Physiological Measurement, vol. 15, no. 2A, p. A37, 1994.
[53] "http://info.tele.hc360.com/html/001/002/002/24691.htm," 2005.
[54] MEDICAL INSTRUMENTATION APPLICATION AND DESIGN, THIRD ed WILEY, 2005.
[55] A. J. Fitzgerald, D. S. Holder, L. Eadie, C. Hare, and R. H. Bayford, "A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 668-675, 2002.
[56] "http://digital.ni.com/express.nsf/bycode/lockin," 2005.
[57] L. Angrisani and L. Ferrigno, "Reducing the uncertainty in real-time impedance measurements," Measurement, vol. 30, no. 4, pp. 307-315, 2001.
[58] M. Min, O. Martens, and T. Parve, "Lock-in measurement of bio-impedance varia-tions," Measurement, vol. 27, no. 1, pp. 21-28, 2000.
[59] "Digital Communications,". BERNARD SKLAR, Ed. Prentice Hall, 2005.
[60] E. Gersing and M. Osypka, "EIT using magnitude and phase in an extended frequency range," Physiological Measurement, vol. 15, no. 2A, p. A21, 1994.
[61] Ph. D. MURRAY R.SPIEGEL, THEORY AND PROBLEMS OF VECTOR ANALYSIS, METIC ed McGRAW-HILL, 2005.
[62] I. Basarab-Horwath, J. Piotrowski, and P. M. McEwan, "Calculated measures of per-formance in electrical impedance tomography using a finite-element model," Physio-logical Measurement, vol. 16, no. 4, p. 263, 1995.
[63] B. H. Blott, G. J. Daniell, and S. Meeson, "Electrical impedance tomography with compensation for electrode positioning variations," Physics in Medicine and Biology, vol. 43, no. 6, p. 1731, 1998.
[64] L. M. Heikkinen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, "Modelling of in-ternal structures and electrodes in electrical process tomography," Measurement Sci-ence and Technology, vol. 12, no. 8, p. 1012, 2001.
[65] P. J. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, "Three-dimensional electrical impedance tomography based on the complete electrode model," Biomedi-cal Engineering, IEEE Transactions on, vol. 46, no. 9, pp. 1150-1160, 1999.
[66] Peter Metherall, "Three Dimensional Electrical Impedance Tomography of the Human Thorax." 1998.
[67] M. C. Kim, S. Kim, H. J. Lee, Y. J. Lee, K. Y. Kim, and S. Anghaie, "An experimental study of electrical impedance tomography for the two-phase flow visualization," In-ternational Communications in Heat and Mass Transfer, vol. 29, no. 2, pp. 193-202, 2002.
[68] Singiresu S.Rao, Applied Numerical Methods for Engineers and Scientists Prentice Hall, 2002.
[69] N. M. Briggs, N. J. Avis, and F. Kleinermann, "A real-time volumetric visualization system for electrical impedance tomography," Physiological Measurement, vol. 21, no. 1, p. 27, 2000.
[70] P. Hua, J. G. Webster, and W. J. Tompkins, "A regularised electrical impedance tomo-graphy reconstruction algorithm," Clinical Physics and Physiological Measurement, vol. 9, no. 4A, p. 137, 1988.
[71] P. Nick and R. B. L. William, "A Matlab toolkit for three-dimensional electrical im-pedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project," Measurement Science and Technology, vol. 13, no. 12, p. 1871, 2002.