| 研究生: |
翁聖崴 Sheng-Uei Weng |
|---|---|
| 論文名稱: | Computational Study of the Catalytic Mechanism of Ketol–Acid Reductoisomerase of Sso-ilvC2 Protein |
| 指導教授: |
蔡惠旭
Hui-Hsu Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 酮酸還原異構酶 、硫化葉菌 、低溫電子顯微鏡影像 |
| 外文關鍵詞: | Ketol–Acid Reductoisomerase, Sso-ilvC2, cryo-EM |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
支鏈型胺基酸合成路徑 (branched chain amino acids biosynthetic pathway) 涉及了三種不同的酵素來參與整個化學反應。酮酸還原異構酶 (ketol-acid reductoisomerase) 是支鏈型胺基酸合成路徑中參與反應的第二個酵素。這個酵素對於開發新型的除草劑與抗生素是一個很好的目標,因為它不存在於人體與動物之中。酮酸還原異構酶的催化總反應依序為,第一步,與鎂離子有關的烷基轉移;第二步,利用菸鹼醯胺腺嘌呤二核苷酸磷酸或菸鹼醯胺腺嘌呤二核苷酸NAD(P)H 進行酮基還原。然而,對於酮酸還原異構酶的反應機制依然是不夠清楚的,而且對於鎂離子在酵素中扮演的角色與總反應的起始劑為何都是不清楚的。在本篇研究中,我們的研究對象為Sso-ilvC2 蛋白,它是硫化葉菌 (Sulfolobus solfataricus) 的酮酸還原異構酶,我們利用分子動態柔性擬合 (molecular dynamic flexible fitting) 技術與低溫電子顯微鏡 (cryo-EM) 影像 (解析度 = 3.4 Å) 來建立Sso-ilvC2 蛋白的三維結構。我們利用密度泛函理論的計算方法來探討,在不同情況下的反應物,對於甲基轉移所需的活化能。在我們的研究中發現,反應物上的酮基先被質子化後,在進行甲基轉移,所需要的活化能是最低的 (21.5 kcal/mol)。
The ketol-acid reductoisomerase (KARI) is an enzyme necessary for the branched chain amino acids (BCAA) biosynthetic pathway. KARIs catalyze an alkyl-migration of substrate followed by a ketol-acid reduction in terms of NAD(P)H. However, the KARI reaction mechanism is remained unclear; in particular, the roles of Mg2+ ion pair in the catalysis and how the KARI reaction is initialized are still unknown. In this study, we obtain the 3D structure of Sso-ilvC2 protein, a KARI from Sulfolobus solfataricus, from the cryo-EM (resolution = 3.4 Å) in terms of the molecular dynamic flexible fitting (MDFF) technique. We employ the first principle DFT calculations to investigate the activation energy of methyl migration under different catalysis conditions of substrate based on the active site structure of Sso-ilvC2 protein obtained from the cryo-EM structure refined by MD simulations. We observed that the substrate when its ketone group is protonated has lowest active energy (21.5 kcal/mol) for the methyl migration.
1. Garcia, M. D.; Nouwens, A.; Lonhienne, T. G.; Guddat, L. W., Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences 2017, 114 (7), E1091-E1100.
2. Arfin, S. M.; Umbarger, H. E., Purification and Properties of the Acetohydroxy Acid Isomeroreductase of Salmonella typhimurium. Journal of Biological Chemistry 1969, 244 (5), 1118-1127.
3. Chunduru, S. K.; Mrachko, G. T.; Calvo, K. C., Mechanism of ketol acid reductoisomerase. Steady-state analysis and metal ion requirement. Biochemistry 1989, 28 (2), 486-493.
4. Thomazeau, K.; Dumas, R.; Halgand, F.; Forest, E.; Douce, R.; Biou, V., Structure of spinach acetohydroxyacid isomeroreductase complexed with its reaction product dihydroxymethylvalerate, manganese and (phospho)-ADP-ribose. Acta Crystallographica Section D 2000, 56 (4), 389-397.
5. Proust-De Martin, F.; Dumas, R.; Field, M. J., A Hybrid-Potential Free-Energy Study of the Isomerization Step of the Acetohydroxy Acid Isomeroreductase Reaction. Journal of the American Chemical Society 2000, 122 (32), 7688-7697.
6. Mrachko, G. T.; Chunduru, S. K.; Calvo, K. C., The pH dependence of the kinetic parameters of ketol acid reductoisomerase indicates a proton shuttle mechanism for alkyl migration. Archives of Biochemistry and Biophysics 1992, 294 (2), 446-453.
7. Sonya, T.; M., P. M.; Volker, S.; A., L. J.; W., G. L.; Gerhard, S., Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol–Acid Reductoisomerase. Chemistry – A European Journal 2016, 22 (22), 7427-7436.
8. M., P. K.; David, T.; Shan, Z.; Ajit, K.; Mario, G.; You, L.; A., S. M.; P., M. R.; Gerhard, S.; W., G. L., Crystal Structures of Staphylococcus aureus Ketol‐Acid Reductoisomerase in Complex with Two Transition State Analogues that Have Biocidal Activity. Chemistry – A European Journal 2017, 23 (72), 18289-18295.
9. Bartesaghi, A.; Merk, A.; Banerjee, S.; Matthies, D.; Wu, X.; Milne, J. L. S.; Subramaniam, S., 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 2015, 348 (6239), 1147-1151.
10. Merk, A.; Bartesaghi, A.; Banerjee, S.; Falconieri, V.; Rao, P.; Davis, M. I.; Pragani, R.; Boxer, M. B.; Earl, L. A.; Milne, J. L. S.; Subramaniam, S., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 2016, 165 (7), 1698-1707.
11. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of chemical theory and computation 2012, 8 (9), 3257-3273.
12. Phillips James, C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel Robert, D.; Kalé, L.; Schulten, K., Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005, 26 (16), 1781-1802.
13. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14 (1), 33-38.
14. Bender, B. J.; Cisneros, A.; Duran, A. M.; Finn, J. A.; Fu, D.; Lokits, A. D.; Mueller, B. K.; Sangha, A. K.; Sauer, M. F.; Sevy, A. M.; Sliwoski, G.; Sheehan, J. H.; DiMaio, F.; Meiler, J.; Moretti, R., Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016, 55 (34), 4748-4763.
15. Lindert, S.; Alexander, N.; Wötzel, N.; Karakaş, M.; Stewart, P. L.; Meiler, J., EM-Fold: De novo atomic-detail protein structure determination from medium resolution density maps. Structure(London, England:1993) 2012, 20 (3), 464-478.
16. DiMaio, F.; Song, Y.; Li, X.; Brunner, M. J.; Xu, C.; Conticello, V.; Egelman, E.; Marlovits, T. C.; Cheng, Y.; Baker, D., Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nature Methods 2015, 12, 361.
17. DiMaio, F.; Tyka, M. D.; Baker, M. L.; Chiu, W.; Baker, D., Refinement of Protein Structures into Low-Resolution Density Maps using Rosetta. Journal of molecular biology 2009, 392 (1), 181-190.
18. Lindert, S.; McCammon, J. A., Improved cryoEM-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction. Journal of Chemical Theory and Computation 2015, 11 (3), 1337-1346.
19. Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K., Molecular Dynamics Flexible Fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods (San Diego, Calif.) 2009, 49 (2), 174-180.
20. C., A. H., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-4621.
21. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 1977, 23 (3), 327-341.
22. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
23. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785-789.
24. Petersson, G. A.; Al-Laham, M. A., A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms. J. Chem. Phys. 1991, 94, 6081.
25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.
26. J., T.; M., P., Continuous surface charge polarizable continuum models of solvation. I. General formalism. The Journal of Chemical Physics 2010, 132 (11), 114110.
27. Trabuco, L. G.; Villa, E.; Mitra, K.; Frank, J.; Schulten, K., Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics. Structure (London, England : 1993) 2008, 16 (5), 673-683.
28. Singharoy, A.; Teo, I.; McGreevy, R.; Stone, J. E.; Zhao, J.; Schulten, K., Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. eLife 2016, 5, e16105.
29. Vanommeslaeghe, K.; D Mackerell, A., Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. 2012; Vol. 52.
30. Vanommeslaeghe, K.; Raman, P.; D Mackerell, A., Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. 2012; Vol. 52.
31. Chan, K.-Y.; Gumbart, J.; McGreevy, R.; Watermeyer, Jean M.; Sewell, B. T.; Schulten, K., Symmetry-Restrained Flexible Fitting for Symmetric EM Maps. Structure 2011, 19 (9), 1211-1218.
32. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K.; Snow, C. D.; Brustad, E. M.; McIntosh, J. A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (27), 10946-51.
33. Cahn, J. K.; Brinkmann-Chen, S.; Spatzal, T.; Wiig, J. A.; Buller, A. R.; Einsle, O.; Hu, Y.; Ribbe, M. W.; Arnold, F. H., Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases. The Biochemical journal 2015, 468 (3), 475-84.