跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱品翰
Pin-Han Chiu
論文名稱: 超音波振動輔助啄鑽式藍寶石微孔加工之研究
A Study on Ultrasonic Vibration Assisted Micro-hole Pecking Drilling of Sapphire
指導教授: 崔海平
Hai-Ping Tsui
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 藍寶石超音波振動輔助啄鑽加工鑽削
外文關鍵詞: sapphire, ultrasonic vibration assist, pecking drilling, drilling
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍寶石係屬高硬脆材料,於進行微孔鑽削加工時,刀具的磨損大且加工後的孔周圍會產生大面積脆性破裂,必須加以克服。本研究是利用超音波振動輔助啄鑽加工方式針對藍寶石材料進行微孔加工之研究,探討各種加工方式與參數如進給速度、啄鑽量、超音波功率與主軸轉速對加工品質特性的影響,加工品質特性包括有微孔入出口之破片面積值、刀具切削刃變化量與實際微孔直徑,並利用光學顯微影像量測儀(OM)、雷射共軛焦掃描顯微鏡(LSCM¬)及掃描式電子顯微鏡(SEM)觀察藍寶石在鑽削後加工微孔的直徑、破片面積值與微孔周圍的破裂形貌。
    實驗結果顯示,超音波振動輔助啄鑽加工可排除藍寶石材料於加工過程中切屑和加工產生的廢熱,可有效減少加工中的切削力及加工溫度,降低刀具磨耗,進而延長刀具壽命,而根據實驗結果在進給速度0.15 mm/min、啄鑽量15 μm、超音波功率等級Level 2 (Amplitude:0.23 μm)以及主軸轉速10000rpm時,可得到較佳的入口破片面積1877.852 μm²以及較佳的出口破片面積2505.519 μm²,相較於傳統鑽削方式,入口破片面積值減少了344.53%,而出口破片值減少952.04%,且平均孔徑入出口差異值及切削刃圓角變化量較小,提高了刀具壽命。


    Sapphire is a high hard-brittle material. During micro-hole drilling, the tool wear is enormous, and a large area of brittle fracture will occur around the machined hole. To overcome these problems, this research adopted ultrasonic vibration-assisted pecking drilling of the micro-holes on sapphire. The influence of various processing methods and parameters, such as the feed rate, pecking depth, ultrasonic power, and spindle speed, on the machining qualitaty characteristics were discussed. Machining quality characteristics include the value of the chipping area at the inlet and outlet of the micro-hole, the variation of arc radius of the cutting edge, and the average diameter of micro-hole. Optical microscopy (OM), laser scanning confocal microscopy (LSCM), and scanning electron microscopy (SEM) were used to observe the diameter of the micro-hole, the value of the chipping area, and the fracture morphology of micro-holes in sapphire after drilling.
    The experimental results indicate that ultrasonic vibration-assisted pecking drilling could remove waste heat from chipping and machining of sapphire material during machining, which can effectively reduce the cutting force and processing temperature during machining, minimizing tool wear, and therefore, extending tool life. According to the experimental results, a better inlet chipping area of 1877.852 μm² and a better outlet chipping area of 2505.519 μm² were obtained under the feed rate of 0.15 mm/ min, pecking depth of 15 μm, ultrasonic power level of 2 (amplitude: 0.23 μm), and spindle speed of 10000 rpm. Compared with the traditional drilling method, the value of the inlet chipping area was reduced by 344.53%, the value of the outlet chipping area was reduced by 952.04%, and the difference value between the inlet and outlet of the average hole diameter and the change of the cutting edge fillet was smaller, which improves the tool life.

    摘 要 ii ABSTRACT iii 誌 謝 v 目 錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及目的 2 1-3 文獻回顧 4 1-3-1 脆性材料加工特性 4 1-3-2 鑽削加工 4 1-3-3 超音波振動輔助加工 5 1-3-4 深孔啄鑽加工法 8 1-4 論文架構 9 第二章 實驗基礎原理 10 2-1 切削加工原理 10 2-1-1 鑽削加工理論 10 2-1-2 啄鑽加工理論 12 2-2 超音波振動輔助原理 13 2-2-1 超音波加工的分類 13 2-3超音波振動輔助鑽削加工原理 15 2-4脆性材料的延性移除與脆性移除關係轉變 16 2-4-1 脆性材料裂紋形成機制 16 2-4-2 高靜壓力下脆性轉變延性 17 2-4-3 臨界切削深度中延性切削轉變脆性切削模式 17 第三章 實驗設備與材料 18 3-1 實驗簡介 18 3-2 實驗設備 19 3-3 實驗材料 27 3-4 實驗流程與方法 29 第四章 結果與討論 34 4-1 不同的輔助方法對於藍寶石加工之影響 34 4-2 不同的進給速度對於藍寶石材料加工之影響 43 4-3 不同的啄鑽量對於藍寶石材料加工之影響 51 4-4 不同的超音波功率對於藍寶石材料加工之影響 58 4-5 不同的主軸轉速對於藍寶石材料加工之影響 66 4-6 藍寶石加工破裂型態分析 74 4-7 鑽石披覆螺旋鑽針磨耗觀察 78 第五章 結論 79 未來展望 82 參考文獻 83

    [1] Z. Yang, W. Li, "Study for increasing micro-drill reliability by vibrating drilling." Reliability engineering & system safety , vol.61, no.3, pp. 229-233, 1998.
    [2] K. Egashira, K. Mizutani, "Ultrasonic vibration drilling of microholes in glass." CIRP Annals, vol.51, no.1, pp. 339-342, 2002.
    [3] H. Paris, S. Tichkiewitch, G. Peigne, "Modelling the vibratory drilling process to foresee cutting parameters.", CIRP annals, vol.54, no.1, pp. 367-370, 2005.
    [4] E. A. Rahim, H. Sasahara, "A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys.", Tribology International, vol.44, no.3, pp. 309-317, 2011.
    [5] W. Hiroki, K. Ryo, K. Yasuhiro, A. Tojiro, S. Hiroyuki, H. Seiji, "Ultrasonic-vibration-assisted micromachining of sapphire." Materials Science Forum, vol. 874, pp. 247-252, 2016.
    [6] J. Wang, J. Zhang, P. Feng, P. Guo, "Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: a critical review.", Ceramics International, vol.44, no.2, pp. 1227-1239, 2018.
    [7] P. Feng, J. Wang, J. Zhang, J. Zhang, "Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites.", Ceramics International, vol.43, no.1, pp. 791-799, 2017.
    [8] LED用藍寶石基板(襯底)簡介。2011年9月29日,取自https://www.ledinside.com.tw/knowledge/20110929-17201.html。
    [9] T. R. Lin, "Cutting behavior of a TiN-coated carbide drill with curved cutting edges during the high-speed machining of stainless steel.", Journal of Materials Processing Technology, vol.127, no.1, pp.8-16, 2002.
    [10] 鄭富堯,超音波振動輔助加工玻璃材料之參數分析,國立聯合大學,民國102年
    [11] N. Kazuki, T. Yu, A. Tojiro, K. Yasuhiro, H. Seiji, "High-precision and high-efficiency micromachining of chemically strengthened glass using ultrasonic vibration.", Procedia CIRP 14, pp. 389-394, 2014.
    [12] D. W. Kim, M. W. Cho, T. I. Seo, E. S. Lee, "Application of design of experiment method for thrust force minimization in step-feed micro drilling.", Sensors, vol.8, no.1, 211-221, 2008.
    [13] A. V. Sandeep reddy, S. Ajay kumar, T. Jagadesh, "The Influence of graphite, MOS2 and Blasocut lubricant on hole and chip geometry during peck drilling of aerospace alloy.", Materials Today: Proceedings, vol.24, pp. 690-697, 2020.
    [14] K. Phapale, Dr. Ramesh Singh, Dr. RKP Singh, "Comparative Assessment of Delamination control techniques in Conventional drilling of CFRP." Procedia Manufacturing, vol.48, pp. 123-130, 2020.
    [15] P. W. Bridgeman, "Effects of very high pressures on glass.", Journal of applied physics, vol.24, no.4, pp. 405-413, 1953.
    [16] B. Lawn, R. Wilshaw, "Indentation fracture: principles and applications.", Journal of materials science, vol.10, no.6, pp. 1049-1081, 1975.
    [17] K. Liu, X. P. Li, M. Rahman, X. D. Liu, "A study of the cutting modes in the grooving of tungsten carbide.", The International Journal of Advanced Manufacturing Technology, vol.24, no.5, pp. 321-326, 2004.
    [18] M. Sajjadi, M. Malekian, S. S. Park, "Investigation of micro scratching and machining of glass.", International Manufacturing Science and Engineering Conference, Vol. 43628, pp. 401-408, 2009.
    [19] T. R. Lin, R. F. Shyu, "Improvement of tool life and exit burr using variable feeds when drilling stainless steel with coated drills.", The International Journal of Advanced Manufacturing Technology, vol.16, no.5, pp. 308-313, 2000.
    [20] Y. C. Chen, Y. S. Liao, "Study on wear mechanisms in drilling of Inconel 718 superalloy.", Journal of Materials Processing Technology, vol.140, no.1-3, pp. 269-273, 2003.
    [21] R. Neugebauer, A. Stoll, "Ultrasonic application in drilling." Journal of materials processing technology, vol.149, no.1-3, pp. 633-639, 2004.
    [22] 楊忠義,超音波振動輔助加工於玻璃材料加工研究,金屬工業研究發 展中心,民國99年
    [23] B. Lauwers, J. Bernreiter, T. Jacobs, J. Loneders, "Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials.", Proceedings of the 4th CIRP International Conference on High Performance Cutting, pp. 1-6, 2010.
    [24] H. Isobe, Y. Uehara, K. Hara, "Effect of ultrasonic vibration drilling on cutting stress distribution", Key Engineering Materials. Vol. 523, pp. 191-196, 2012.
    [25] R. Tsuboia, Y. Kakinuma, T. Aoyama, H. Ogawa, S. Hamada, "Ultrasonic vibration and cavitation-aided micromachining of hard and brittle materials", Procedia CIRP 1, pp. 342-346, 2012.
    [26] C. Zhang, P. Feng, Z. Pei, W. Cong, "Rotary ultrasonic machining of sapphire: feasibility study and designed experiments.", Key Engineering Materials, Vol. 589, pp. 523-528, 2014.
    [27] J. Kumar, "Ultrasonic machining—a comprehensive review.", Machining Science and Technology, vol.17, no.3, pp. 325-379, 2013.
    [28] X. Xiao, K. Zheng, W. Liao, H. Meng, "Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics.", International Journal of Machine Tools and Manufacture, vol.104, pp. 58-67, 2016.
    [29] Z. Liang, Y. Ma, X. Wang, T. Zhou, H. Guo, X. Sun, L. Jiang, "Ultrasonic cavitation and vibration hybrid-assisted micro-drilling of stainless steel.", The International Journal of Advanced Manufacturing Technology, vol.104.5, pp. 3073-3082, 2019.
    [30] 蔡明義、林岳鋒、張嘉泰、楊家豪,超音波振動輔助難削材加工之研究,機械新刊,民國108年
    [31] Y. Liu, Z. Liu, X. Wang, T. Huang, "Experimental study on tool wear in ultrasonic vibration–assisted milling of C/SiC composites.", The International Journal of Advanced Manufacturing Technology, vol.107, no.1, pp. 425-436, 2020.
    [32] B. M. A. Abdo, S. Anwar, A. E. Tamimi, "Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining.", Journal of Manufacturing Processes, vol.43, pp. 175-191, 2019.
    [33] F. Pashmforoush, R. F. Zinati, D. Maleki, "Investigation of ultrasonic vibration on thrust force, surface integrity, and geometrical tolerances during drilling of natural filler reinforced composites.", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.234, no.20, pp. 4041-4055, 2020.
    [34] E. Uhlmanna, F. Protz, N. Sassi, "Ultrasonic assisted drilling of cemented carbide.", Procedia CIRP, vol.101, pp. 222-225, 2021.
    [35] D. W. Kim, M. W. Cho, T. I. Seo, E. S. Lee, "Application of design of experiment method for thrust force minimization in step-feed micro drilling. " Sensors, vol.8(1), pp.211-221, 2022.
    [36] 傅光華等,切削刀具學,高立圖書有限公司,民國86年
    [37] H. Wang, F. Ning, Y. Hu, P. Fernando, Z. Pei, W. Cong, "Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables.", Advances in Mechanical Engineering, vol.8, no.9, pp. 1687814016670284, 2016.
    [38] X. Peng, L. Li, Y. Yang, G. Zhao, T. Zeng, "Experimental study on rotary ultrasonic vibration assisted drilling rock.", Advances in Space Research, vol.67, no.1, pp. 546-556, 2021.
    [39] M. Wang, H. Yu, J. Xu, G. Chen, B. Dai, S. Wang, "Amplitude effect on micro-hole drilling of 3D needled Cf/SiC by ultrasonic vibration.", Ceramics International, vol.47, no.24, pp.34987-35001, 2021.

    QR CODE
    :::