跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊庭彰
Yang, Ting-Chang
論文名稱: 利用巡天計畫資料研究激變變星的長周期光變現象
The Long-term Periodicities of Cataclysmic Variables with Synoptic Surveys
指導教授: 周翊
Chou, Yi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 93
中文關鍵詞: 激變變星巡天計畫時間序列密近雙星
外文關鍵詞: cataclysmic variable, close binary, sky survey, timing analysis
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對光學天文觀測而言,目前已經進到了巡天計畫的時代。從早期的帕洛瑪照相底片巡天計畫,到近期如 SDSS, PTF, CRTS 等等的巡天計畫。這些巡天計畫因為具有廣視野,所以對於某類天體的系統性研究有非常好的助益。有幸的是中央大學在 2006 年及 2009 年分別加入了兩個大型的國際巡天計畫 PS1 及 PTF。這兩個計畫都是由許多國家共同參與,各自提供有興趣的科學目標來進行研究。而激變變星的光變研究是我們感興趣的科學題目。而我們預期 PTF 計畫對於較長周期的訊號會有較佳的偵測結果。所以我們著手進行的激變變星的長周期性研究。由於我們有 PTF 觀測處理之後每>顆偵測到的星體的光度資料。我們便建立了一個小型但迅速的系統來快速地獲得光變曲線。這個系統幫助我們在龐大的資料中找到我們有興趣的天體的光變曲線。

    我們利用了 Downes 所作的已知激變變星星表作為參考,在 PTF 資料庫中找尋相對應的激變變星。在星表中的 1830 個星體中,我們找到了 344 個激變變星。排除掉了比較少觀測的星體後,約有一百個激變變星具有足夠的資料點可以進行時間序列分析。我們利用了 Lomb-Scargle 及 PDM 等尋找周期的方法,對於這些光變曲線進行分析。最後找到了十個具有長周期性訊號的激變變星。這些長周性性的訊號,有可能是由不同機制造成的。所以我們針對這些可能的機制進行了探討。這>些機制主要有可能是吸積盤的進動、三星系統、伴星的磁場變化、以及一些其他可能的機制等。在我們發現的這些目標中,主要的長周期成因可能為三星系統。而有少數較短的周期可能是由於吸積>盤的進動所造成。至於其他可能的機制,我們初步排除了可能性。這個研究是為了未來超大型巡天的先導研究。利用相似的方法,當超大型巡天上線之後,我們就可以立即地增加我們目標的偵測率>,而對激變變星的長周期光變現象有更深入的了解。


    It is the synoptic survey era for the astronomical optical observation. The evolution of the synoptic survey is from the formaer Palomar Sky Survey (PSS), to more recently SDSS, PTF, and CRTS surveys, etc. The major feature of synoptic surveys is wide field-of-view. Therefore, the systematic study on specific astronomical object is the niche of synoptic survey. Luckily, the National Central University joined two large synoptic survey in 2006 for Pan-STARRS1, and 2009 for PTF. These two projects are international cooperation, and many projects were proposed for the potential scientific studies with these surveys. What we are interested in is the variability of cataclysmic variables (CVs). We expected that the long-term variability of CVs are good to study with the PTF project. Therefore, we started the study of long-term variabilities of CVs.

    We adopted Downes' catalog of CVs as a reference catalog for our study. A small but quick responsive data retrival system was established by us. We retrieved the light curves of CVs from this system. There are 344 CVs were matched in the PTF database. After filtering out the light curves with a few obsrvations, there are about 100 CVs were selected for further timing analysis. We adopt the Lomb-Scargle and PDM methods to analysis the light curves. Finally, there are 10 CVs found to possess long-term periodic signals. The lnog-term periodicities are possibly caused by different mechanisms. They are possibly from the precession of the accretion disk, hierarchical triple star system, the magnetic filed strength of the companion changes, and other possible mechanisms. We discussed the sources case by case, and concluded that the majority of the mechanism is possibly from the hierarchical triple system. On the other hand, a few sources with shorter long-term periodicities maybe cause by the precesion of the accretion disk. Basically, we could eliminate other possiblity on our CVs with the current evidence. This study is the pilot study on the long-term variability of the CVs with even larger synoptic surveys. When larger synotpic surveys are online, the method for the study may yield more results and help us to clearify the mechanisms of the long-term variabilitys of CVs.

    摘要 i Abstract ii Contents iii List of Figures v List of Tables vii List of Acronyms viii 1 Introduction 1 1.1 Preface 1 1.2 Close Binary System and X-ray Binary 3 1.3 Cataclysmic Variable 5 1.3.1 Introduction & Classification 5 1.3.2 Orbital Periods & Evolution 8 1.3.3 Superhump 9 1.3.4 Catalogs 11 1.4 Outline of This Thesis 12 2 Synoptic Surveys 13 2.1 The Synoptic Era 13 2.2 Pan-STARRS 16 2.3 Palomar Transient Factory 17 2.4 Catalina Real-Time Transient Survey 21 2.5 The Large Synoptic Survey Telescope (LSST) 22 3 Method of Timing Analysis 24 3.1 Fourier Based Methods 24 3.1.1 Discrete Fourier Transformation 24 3.1.2 Lomb-Scargle Periodogram 25 3.2 Phase Based Methods 26 3.2.1 Analysis of Variance 26 3.2.2 Phase Dispersion Minimization 27 3.3 Constrains of the Synoptic Surveys 27 4 Mechanisms for Long-term Variations of Close Binaries 30 4.1 Long-term Variation in X-ray Binaries 30 4.2 Long-term Variation in Cataclysmic Variables 33 4.2.1 Precession of the Accretion Disks 33 4.2.2 Hierarchical Triple Star 35 4.2.3 Magnetic Variation of Companion Star 37 4.2.4 Other Mechanisms 39 5 Long-term Periodicities of Cataclysmic Variables 42 5.1 Data Extraction and Calibration 42 5.2 Long-term Modulations for the Individual Cataclysmic Variables 44 5.2.1 BK Lyncis (2MASS J09201119+3356423) 44 5.2.2 CT Boötis 45 5.2.3 LU Camelopardalis: 2MASS J05581789+6753459 45 5.2.4 QZ Serpentis: SDSS J155654.47+210719.0 46 5.2.5 V825 Herculis: 2MASS J17183699+4115511 46 5.2.6 V1007 Her: 1RXS J172405.7+411402 46 5.2.7 UMa 01: 2MASS J09193569+5028261 47 5.2.8 Her 12: SDSS J155037.27+405440.0 47 5.2.9 Coronae Borealis 06 & VW Coronae Borealis 48 5.2.10 Discussion 48 6 Future Perspective 64 Bibliography 66 A The Sources with Unknown Orbital Periods 72 B PTF Catalog 75 C Metadata Database 77 D Publication List 79

    Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2006, ApJS, 162, 38
    Ak, T., Ozkan, M. T., & Mattei, J. A. 2001, A&A, 369, 882
    Ak, T., Retter, A., & Liu, A. 2005, NewA, 11, 147
    Ak, T., Retter, A., Liu, A., & Esenoğlu, H. H. 2005a, PASA, 22, 105
    Applegate, J. H. 1992, ApJ, 385, 621
    Augusteijn, T., Heemskerk, M. H. M., Zwarthoed, G. A. A., & van Paradijs, J. 1994, A&AS, 107,
    Baluev, R. V. 2008, MNRAS, 385, 1279
    Bellm, E. 2014, The Third Hot-wiring the Transient Universe Workshop, 27
    Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
    Beuermann, K., Buhlmann, J., Diese, J., et al. 2011, A&A, 526, A53
    Borges, B. W., Baptista, R., Papadimitriou, C., & Giannakis, O. 2008, A&A, 480, 481
    Borkovits, T., Hajdu, T., Sztakovics, J., et al. 2016, MNRAS, 455, 4136
    Breedt, E., Gänsicke, B. T., Drake, A. J., et al. 2014, MNRAS, 443, 3174
    Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv: 1612.05560
    Charles, P. A. 2002, The Physics of Cataclysmic Variables and Related Objects, 261, 223
    Chavez, C. E., Tovmassian, G., Aguilar, L. A., Zharikov, S., & Henden, A. A. 2012, A&A, 538, A122
    Chou, Y. & Grindlay, J. E. 2001, ApJ, 563, 934
    Cooley, James W. & Tukey, John W., 1965, Math. Comput. 19, 297
    de Miguel, E., Patterson, J., Cejudo, D., et al. 2016, MNRAS, 457, 1447
    Dhillon, V. S., Littlefair, S. P., Howell, S. B., et al. 2000, MNRAS, 314, 826
    Djorgovski, S. G., Drake, A., Mahabal, A., et al. 2012, in: The First Year of MAXI: Monitoring Variable X-ray Sources – 4th International MAXI Workshop, eds. T. Mihara & M. Serino, Special Publ. IPCR-127, 263, Tokyo: RIKEN
    Djorgovski, S. G., Mahabal, A., Drake, A., Graham, M., & Donalek, C. 2013, Planets, Stars and Stellar Systems. Volume 2: Astronomical Techniques, Software and Data, 223
    Djorgovski, S.G., Graham, M.J., Donalek, C., Mahabal, A.A., Drake, A.J., Turmon, M., Fuchs, T., 2016, Future Generation Computer Systems, 59, 95
    Downes, R. A., Webbink,R. F., Shara, M. M., et al. 2001, PASP, 113, 764
    Downes, R. A., Webbink, R. F., Shara, M. M., et al. 2006, VizieR Online Data Catalog, 5123,
    Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, ApJ, 696, 870
    Durney, B. R. & Robinson, R. D. 1982, ApJ, 253, 290
    Eyer, L., & Mowlavi, N. 2008, Journal of Physics Conference Series, 118, 012010
    Fisher, R., 1921, the Journal of Agricultural Science, 11, 107
    Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2016, arXiv: 1612.05243
    Foulkes, S. B., Haswell, C. A., Murray, J. R., & Rolfe, D. J. 2004, MNRAS, 349, 1179
    Giovannelli, F. 2008, Chinese Journal of Astronomy and Astrophysics Supplement, 8, 237
    Green, R. F., Ferguson, D. H., Liebert, J., & Schmidt, M. 1982, PASP, 94, 560
    Greiner, J., Schwarz, R., & Wenzel, W. 1998, MNRAS, 296, 437
    Grøtte, M., Virani, S., Holzinger, M., et al. 2016, Advanced Maui Optical and Space Surveillance Technologies Conference, 1
    Hakala, P., Ramsay, G., Barclay, T., & Charles, P. 2015, MNRAS, 453, L6
    Han, Z.-T., Qian, S.-B., Fernández-Lajús, E., Voloshina, I., & Zhu, L.-Y. 2017, PASJ, 69, 55
    Hayasaki, K., & Okazaki, A. T. 2006, MNRAS, 372, 1140
    Hellier, C., 2001, Cataclysmic Variable Stars — How and Why they Vary (1st ed.; Springer-Verlag London)
    Hümmerich, S., Gröbel, R., Hambsch, F.-J., et al. 2017, NewA, 50, 30
    Ivezic, Z., Tyson, J. A., Abel, B., et al. 2008, arXiv:0805.2366
    Kaiser, N., Aussel, H., Burke, B. E., et al. 2002, Proc. SPIE, 4836, 154
    Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1
    Kemp, J., Patterson, J., de Miguel, E., et al. 2012, Society for Astronomical Sciences Annual Symposium, 31, 7
    Knigge, C., Baraffe, I., & Patterson, J. 2011, ApJS, 194, 28
    Kolb, U. 1995, Magnetic Cataclysmic Variables, 85, 440
    Körding, E. G., Knigge, C., Tzioumis, T., & Fender, R. 2011, MNRAS, 418, L129
    Kotze, M. M., & Charles, P. A. 2012, MNRAS, 420, 1575 (KC12)
    Kozai, Y. 1962, AJ, 67, 591
    Kozhevnikov, V. P. 2007, MNRAS, 378, 955
    LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv: 0912.0201
    Laher, R. R., Surace, J., Grillmair, C. J., et al. 2014, PASP, 126, 674
    Lasota, J.-P. 2001, NewAR, 45, 449
    Law, N. M., Kulkarni, S. R.,Dekany, R. G., et al. 2009, PASP, 121, 1395
    Lee, C.-H., Ngeow, C.-C., & PTF Collaboration 2014, Tenth Pacific Rim
    Conference on Stellar Astrophysics, 482, 55
    Lidov, M. L. 1962, Planet. Space Sci., 9, 719
    Lomb, N. R. 1976, Ap&SS, 39, 447
    Mahabal, A. A., Djorgovski, S. G., Drake, A. J., et al. 2011, Bulletin of the Astronomical Society of India, 39, 387
    Margon, B., Grandi, S. A., Stone, R. P. S., & Ford, H. C. 1979, ApJL, 233, L63
    Masci, F. J., Laher, R. R., Rebbapragada, U. D., et al. 2017, PASP, 129, 014002
    Mazeh, T., & Shaham, J. 1979, A&A, 77, 145
    Meyer-Hofmeister, E., Vogt, N., & Meyer, F. 1996, A&A, 310, 519
    Monet, D., Axelrod, T., Claver, C., Blake, T., Lupton,R., Pearce, E., Shah, R., and Woods., D., 2012, “Rapid cadence collections with the space surveillance telescope.”, Technical report, DTIC Document
    Montgomery, M. M. 2009, MNRAS, 394, 1897
    Ngeow, C.-C., Lee, C.-H., Yang, M. T.-C., et al. 2015, AJ, 149, 66
    Osaki, Y. 1989, PASJ, 41, 1005
    Osaki, Y. 1996, PASP, 108, 39
    Paczyński, B. 1967, AcA, 17, 287
    Petterson, J. A. 1977, ApJ, 218, 783
    Patterson, J. 1995, PASP, 107, 657
    Patterson, J. 1998, PASP, 110, 1132
    Patterson J., 1999, in Mineshige S., Wheeler C., eds, Disk Instabilities in Close Binary Systems. Universal Academy Press, Tokyo, p. 61
    Patterson, J., Masi, G., Richmond, M. W., et al. 2002, PASP, 114, 721
    Patterson, J., Kemp, J., Harvey, D. A., et al. 2005, PASP, 117, 1204
    Pfeiffer, H. P., & Lai, D. 2004, ApJ, 604, 766
    Potter, S. B., Romero-Colmenero, E., Ramsay, G., et al. 2011, MNRAS, 416, 2202
    Rau, A., Kulkarni, S. R., Law,N. M., et al. 2009, PASP, 121, 1334
    Ringwald, F. A., & Reynolds, D. S. 2003, Bulletin of the American Astronomical Society, 35, 44.07
    Ringwald, F. A., Thorstensen, J. R., Honeycutt, R. K., & Robertson, J. W. 1996, MNRAS, 278, 125
    Ringwald, F. A. 1991, BAAS, 23, 1463
    Ritter, H., & Kolb, U. 2003, A&A, 404, 301
    Robinson, R. D., & Durney, B. R. 1982, A&A, 108, 322
    Rude, G. D., & Ringwald, F. A. 2012, NewA, 17, 453
    Scargle, J. D. 1982, ApJ, 263, 835
    Schandl, S., & Meyer, F. 1994, A&A, 289, 149
    Schmidt, G. D., Hoard, D. W., Szkody, P., et al. 1999, ApJ, 525, 407
    Schmidtobreick, L., Papadaki, C., Tappert, C., & Ederoclite, A. 2008, MNRAS, 389, 1345
    Schwarzenberg-Czerny, A. 1989, MNRAS, 241, 153
    Shears, J. 2009, Journal of the American Association of Variable Star Observers (JAAVSO), 37, 80
    Sheets, H. A., Thorstensen, J. R., Peters, C. J., Kapusta, A. B., & Taylor, C. J. 2007, PASP, 119, 494
    Shih, I. C., Bird, A. J., Charles, P. A., Cornelisse, R., & Tiramani, D. 2005, MNRAS, 361, 602
    Šimon, V. 2016, MNRAS, 463, 1342
    Skillman, D. R., Patterson, J., & Thorstensen, J. R. 1995, PASP, 107, 545
    Stanishev, V., Kraicheva, Z., & Genkov, V. 2001, A&A, 379, 185
    Stellingwerf, R. F. 1978, ApJ, 224, 953
    Suleimanov, V., Bikmaev, I., Belyakov, K., et al. 2004, Astronomy Letters, 30, 615
    Suárez Mascareño, A., Rebolo, R., & González Hernández, J. I. 2016, A&A, 595, A12
    Szkody, P., Henden, A., Agüeros, M., et al. 2006, AJ, 131, 973
    Thomas, N. L., Norton, A. J., Pollacco, D., et al. 2010, A&A, 514, A30
    Thorstensen, J. R., Fenton, W. H., Patterson, J., et al. 2002, PASP, 114, 1117
    Trenti, M., Ransom, S., Hut, P., & Heggie, D. C. 2008, MNRAS, 387, 815
    Vanmunster, T. 2006, Journal of the American Association of Variable Star Observers (JAAVSO), 35, 132
    Vogt, N. 1980, A&A, 88, 66
    Vrielmann, S., & Offutt, W. 2003, MNRAS, 338, 165
    Warner, B. 1976, Structure and Evolution of Close Binary Systems, 73, 85
    Warner, B. 1985, in Interacting Binaries, ed. P. P. Eggleton & J. E. Pringle (Dordrecht: D. Reidel Publishing Company), 367
    Warner, B. 1995, Cambridge Astrophysics Series, 28, 464
    Whitehurst, R., & King, A. 1991, MNRAS, 249, 25
    Whitehurst, R. 1988, MNRAS, 232, 35
    Woudt, P. A., Warner, B., Gulbis, A., et al. 2012, MNRAS, 427, 1004
    Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577
    Zellem, R., Hollon, N., Ballouz, R.-L., et al. 2009, PASP, 121, 942
    Zwitter, T. & Munari, U. 1994, A&AS, 107

    QR CODE
    :::