| 研究生: |
林彥多 Yen-To Lin |
|---|---|
| 論文名稱: |
含N,N-雙吡啶胺基之二苯乙烯衍生物對Zn2+離子之螢光感應行為之研究 Studies on the fluorescence sensing behavior of stilbene derivative containing an N, N-dipyriyl amino group for Zn2+ ion |
| 指導教授: |
楊吉水
Jye-Shane Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 光誘導電子轉移 、分子內的激態錯合體 、二苯乙烯 |
| 外文關鍵詞: | Intramolecular Exciplexes, stilbene, PET |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文乃根據實驗室之前所研究的化合物1-H與Zn2+離子錯合後會造成C-N鍵扭轉的特性而設計出一新的螢光離子感應分子,化合物1-DPhA,由其結果進而衍生出一系列化合物( 2-H、2-DPhA、3-DPhA和3-MPhA )的X-光晶體繞射結構及螢光感應機制的探討。
化合物1-DPhA與Zn2+離子錯合後螢光大幅減弱,而非預期的螢光增強現象,藉由化合物2-DPhA的比較,我們認為化合物 1-DPhA對Zn2+離子的螢光是因C-N鍵扭轉後導致PET的機制產生。我們也合成化合物2-H來探討化合物1-H的螢光感應機制是否也存在著PET現象。化合物2-H在乙腈中具有兩個放射峰,我們認為其中的一新放射峰來自於分子內的exciplex螢光。透過化合物3-DPhA和3-MPhA的比較,我們推測化合物2-H中的電子予體是dpa,而電子受體是二苯乙烯。當化合物2-H和Zn2+離子錯合之後,仍然有分子內exciplex的發生,但電子予體的角色由原本的dpa轉變為二苯乙烯,而電子受體的角色由二苯乙烯轉為dpa/Zn2+。此外,當化合物2-H和化合物3-DPhA 在乙腈中照光後,產生出另一新的具較強螢光的化合物。但化合物2-H與Zn2+離子錯合後,其光化學反應顯然有被抑制的現象產生。
Abstract
In this thesis, we based on the laboratory that studied compound 1-H with Zn2+ ion complex caused the C-N band twisted, and we design a new fluorescent ion sensing molecular, compound 1-DPhA, and we through the result to design a series of compounds (2-H, 2-DPhA, 3-DPhA, 3-MPhA) to probe into the X-ray crystal structures and the mechanism of the fluorescent sensing.
Compound 1-DPhA with Zn2+ complex to cause the largely decrease of the fluorescence, and not expect to increase, and we compare to compound 2-DPhA, and we consider that the fluorescence of the compound 1-DPhA with Zn2+ ion complex to make PET through C-N band twisted. We also synthesize compound 2-H to study the mechanism of the fluorescent sensing of the compound 1-H to have the mechanism of the PET. Compound 2-H have two emission bands in acetonitrile, and we consider a new emission band to come from the intramolecular exciplex. Compare to the compound 3-DPhA and compound 3-MPhA, we propose the electron donor is dpa, and the electron acceptor is stilbene of the compound 2-H. When compound 2-H with Zn2+ complex, still have the intramolecular exciplex. But the role of the electron donor and electron acceptor exchange, and the dpa/Zn2+ play the electron acceptor, and the stilbene play the electron donor. In addition to, compound 2-H and compound 3-DPhA to excitation, and to produce a new strong fluorescence compound. But compound 2-H with Zn2+ complex, and the photochemistry reaction restrained obviously.
參考資料
1. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3.
2. Eggins, B. R. Biosensors-An Introduction, John Wiley & Sons: Chichester, 1997.
3. Valeur, B. Topics in fluorescence spectroscopy﹕Probe Design and Chemical Sensing, Lakowicz, J. R. Ed. Plenum﹕ New York, 1994, Chapter 2.
4. De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
5. Desvergne, J. -P.; Czarnik, A. W. Chemosensors for Ion and Molecule Recognition, NATO ASI Ser., 492, Kluwer﹕Dordrecht, 1997.
6. Winnik, F. M. Chem. Rev. 1993, 93, 857.
7. Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry, Oxford: London, 1991.
8. Scherer, T.; van Stokkum, I. H. M.; Brouwer, A. M.; Verhoeven, J. W. J. Phys. Chem., 1994, 98, 10539.
9. Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116.
10. Bauer, E. Z. Physik. Chem., Abt. B, 1932, 16, 465.
11. Weiss, J.; Fischgold, H. Z. Physik. Chem., Abt. B, 1936, 32, 135.
12. Leonhardt, H.; Weller, A. Z. Physik. Chem. Neue Folge, 1961, 29, 277.
13. Leonhardt, H.; Weller, A. Ber. Bunsenges. Phys. Chem. 1963, 67, 791.
14. Yang, J. -S.; Lin, C.-S.; Hwang, C.-Y. Org. Lett, 2001, 3, 889.
15. Joran, A. D.; Leland, B. A.; Geller, G. G.; Hopfield, J. J.; Dervan, P. B. J. Am. Chem. Soc., 1984, 106, 6090.
16. Pasman, P.; Mes, G. F.; Koper, N. W.; J. Am. Chem. Soc., 1985, 107, 5839.
17. Oevering, H.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; Cotsaris, E.; Verhoeven, J. W.; Hush, N. S. J. Am. Chem. Soc., 1987, 109, 3258.
18. Wasielewski, M. R. Chem. Rev., 1992, 92, 435.
19. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res., 1993, 4, 198.
20. Sauvage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret, C.; Balzani. V. Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev., 1994, 4, 993.
21. Van Dijk, S. I.; Wiering, P. G.; Groen, C. P.; Brouwer, A. M.; Verhoeven, J. W.; Schuddeboom, W.; Warman, J. M. J. Chem. Soc. Faraday Trans., 1995, 91, 2107.
22. Osuka, A.; Marumo, S.; Mataga, N.; Taniguchi, S.; Okada, T.; Yamazaki, I.; Nishimura, Y.; Ohno, T.; Nozaki, K. J. Am. Chem. Soc. 1996, 118, 155.
23. Verhoeven, J.W. Electron Transfer-Form Isolated Molecules to Biomolecules, Part One, Jortner, J.; Bixon, M., eds. Wiley: New York, 1999, P603.
24. Mataga, N. The exciplex, Gordan, M.; Ware, W. R., eds. Academic Press: New York, 1975, P113.
25. Okada, T.; Saito, T.; Mataga, N.; Sakata, Y.; Misumi, S. Bull. Chem. Soc. Jpn., 1977, 50, 331.
26. Hirayama, F. J. Chem. Phys., 1965, 42, 3162.
27. Papper, V.; Pines, D.; Likhtenshtein, G.; Pines, E. J. Photochem Ptotobiol. A. Chem. 1997, 111, 87.
28. Dumon, P.; Jonusauskas, G.; Dupuy, F.; Pée, P.; Rulliére, C.; Létard, J. F.; Lapouyade, R. J. Phys. Chem. 1994, 98, 10391.
29. Görnor, H.; Kuhn, H. J. Adv. Photochem. 1995, 19, 1.
30. Wang, S. Coord. Chem. Rev. 2001, 215, 79.
31. Wang, S.; Pang, J. Freiberg, S.; Yang, X-P.; D''Iorio, M. J. Mater. Chem. 2002, 12, 206
32. Hassan. A. and Wang. S., Chem. Comm. 2000, 211.
33. Chen, L.-X.; Jäger, W. J. H.; Gosztola, D. J.; Niemczyk, M. P.; Wasielewski, M. R. J. Phys. Chem. B. 2000, 104, 1950.
34. Yang, J. -S.; Chiou, S.-Y.; Liau, K.-L. J. Am. Chem. Soc. 2002, 124, 2518.
35. Yang, J.-S.; Lin, Y-H. ; Yang, C. -S Org. Lett, 2002, 4, 777
36. Wolfe, J. P.; Wagaw, S.; Marcoux, J. -F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
37. Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046.
38. Alkorta. I; Elguero. J. J. Org. Chem. 2002, 67, 1515.
39. Lewis, F. D.; Cohen, B. E. J. phys. Chem. 1994, 98, 10591
40. Lewis, F. D.; Reddy, G. D.; Schneider, S.; Gahr, M. J. Am. Chem. Soc. 1991, 113, 3498
41. Akiyama, S.; Tajima, K.; Nakatsuji, S.; Nakashima, K.; Abiru, K.; Watanabe, M. Bull. Chem. Soc. Jpn. 1995, 68, 2043.
42. Bose, R; Ahmad, R.; Dicks, P.; Novak, M.; Kayser, J.; McClelland, A. J. Chem. Soc. Perkin Trans.2. 1999, 8, 1591.
43. Fuson, R. C.; Cooke, H. G. J. Am. Chem. Soc. 1940, 62, 1180.
44. Lebedev, S. A.; Lopatina, V. S.; Sorokina, R. S.; Berestova, S. S.; Petrov, E. S.; Beletskaya, I. P.; BACCAT. Bull. Acad. Sci. USSR Div. Chem. Sci. 1987, 36, 2329.
45. Kochi, K. -J.; Hammond. G. S. J. Am. Chem. Soc. 2002, 124, 2518.
46. Chen, D. -W.; Beuscher, A. E.; Stevens, R. C.; Wirsching, P.; Lerner, R. A.; Janda, K. D. J. Org. Chem. 2001, 66, 1725
47. Hadrich, D.; Berthold, F.; Steckhan, E.; Boenisch, H. J. Med. Chem. 1999, 42, 3101.
48. Henichart, J. P.; Bernier J. L.; Vaccher, C.; Houssin, R.; Warin, V.; Baert, F. Tetrahedron, 1980, 36, 3535.