跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳文建
Wen-Chien Chen
論文名稱: GPS與探空氣球資料觀測可降水量
On the relationship between GPS and radiosonde observations of precipitable water vapor and precipitation
指導教授: 劉說安
Yuei-An Liou
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: 全球定位系統探空氣球降水可降水量
外文關鍵詞: Radiosonde, Precipitation, GPS, Precipitable Water
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水分子在大氣中產生三相變化時,會吸收或釋放極大的能量,進而改變大氣的能量分佈以及垂直穩定度。因此可知水氣對於天氣變化來說,是佔有很大影響因素的地位。所以若能有效分析可降量與降水間相互關係,是有助於了解與評估天氣系統之形成與演變。而在降水發生時,最直接影響的就是大氣或地面上水氣含量的改變,因此本文利用1991至2005年台北及花蓮氣象站探空氣球觀測資料,並配合地面氣象資料,分析各季可降水量比值(RHs)與相對濕度RH對於不同降雨事件類別所發生之趨勢變化,以驗證RHs與降雨發生的相關性。接著利用台北及花蓮地面氣象站之地面溫度(Ts)資料,對兩時段飽和可降水量(PWs)建立關係式,以獲得可連續時間估算PWs之模式。然後採用2003年花蓮探空站最近距離之新城GPS測站所估算的PW(探空站與GPS站相距約4.6公里),並將該測站逐時 資料,加入花蓮探空站所建立各月PWs估算模式,進而求得連續時間的RHs。另外配合對應之逐時自動雨量站資料(GPS站與雨量站相距約1.3公里),探討以模式間接求得的RHs於新城測站,在各月份及颱風個案降雨發生前後連續時間序列之變化情形。進而確立RHs相較於RH而言,對於降水發生是具有較高準確性與靈敏性的。


    There are some relationship between the amount of water vapor in the atmosphere and rainfall. The goal of this investigation is to study the relationship between precipitable water (PW) and rainfall. Two data sets are used, namely radiosonde data acquired at the Taipei and Hualien weather station of Central Weather Bureau (CWB) from year 1991 to year 2005, and data of ground based GPS station operated by PEPU 2003.Then put the surface temperature (Ts) data of PEPU GPS station, the nearest GPS station near Hualien radiosonde station (the distance between these two stations is about 4.6km), in 2003 into the PWs estimation model made by Hualien radiosonde station and use the PW data estimated by PEPU GPS station to get the continuous time RHs at PEPU GPS station. Furthermore, use the data of automatic rainfall station (the distance between rainfall station and GPS station is about 1.3km) to get the change of RHs in front and behind the typhoons in each month at PEPU station indirectly. And then make sure that RHs has more sensitivity and accuracy in precipitation than RH.

    第一章 前言 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 論文章節概述 4 第二章 理論基礎與概念 5 2-1 電波傳遞路徑之影響 5 2-1.1 折射效應與訊號傳遞 5 2-1.2 對流層遲延影響 7 2-1.3 電離層遲延影響 14 2-2 溼遲延與可降水量之關係 16 2-3 全球定位系統簡介 18 2-3.1 GPS衛星架構 19 2-3.2 求解對流層遲延量 20 第三章 資料處理與工作流程 23 3-1 雨量資料方面 23 3-2 探空資料方面 24 3-2.1 儀器介紹 24 3-2.2 探空氣球估算可降水量之方法 24 3-2.3 探空資料工作流程 25 3-3 GPS資料方面 28 3-3.1 接收站介紹 28 3-3.2 地面氣象資料 29 3-3.3 GPS估算可降水量之方法 30 3-3.4 GPS資料工作流程 31 第四章 資料分析與模式建立 34 4-1 實驗分析 34 4-2 估算模式建立 49 第五章 模式應用與成果探討 61 5-1 估算模式應用 61 5-2 實驗成果 69 第六章 結論與未來展望 76 6-1 實驗結論 76 6-2 建議與展望 77 參考文獻 79

    1.林修國,模稜求定與時鐘偏差估計應用於衛星相對定位及姿態求解,國立中央大學大氣物理研究所博士論文,1998。
    2.劉說安、楊名,GPS估計可降水量:WVR約束法,大氣科學,27,134-140,1999。
    3.鄧諭敦,利用全球定位系統估算大氣濕延遲量,國立中央大學太空科學研究所碩士論文,1999。
    4.鄭琦翰,GPS信號估算可降水量與降雨關係之研究,國立中央大學水文科學研究所碩士論文,2004。
    5.曾珮莉,近即時GPS觀測可降水技術之研究,國立中央大學太空科學研究所碩士論文,2005。
    6.戚啟勳,大氣科學,ISBN:957-521-042-5,2001。
    7.Askne J., and H. Nordius, Estimation of tropospheric delay for microwaves form surface weather data, Radio Sci.,22, 376-386, 1987.
    8.Buck, A.L., New Equations for Computing Vapor Pressure and Enhancement Factor, Journal of Applied Meteorology, vol. 20, No. 12, pp. 1527–1532, 1981.
    9.Bauersima I., NAVSTAR/Global Positioning System (GPS) II , Radiointerferometrische Satellitenbeobachtungen. Mitteilungen der Satelliten-Beobachtungsstation Zimmerwald, Bern, vol 10, 1983.
    10.Bevis M., S. Businger, T. A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware, GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97, 15, 784-801,1992.
    11.Bevis M., S. Businger, T. A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware, GPS meteorology: Mapping zenith net delays onto principitable water, Journal Application Meteorology, 33, 379-386, 1994.
    12.Chao, C.C., A new method to predict wet zenith range correction from surface measurements, JPL technical report 32-1526, vol. XIV, pp. 33-41, 1971.
    13.Campbell, I., Refraction Errors in Satellite Positioning System, GPS/Ionosphere Workshop Proceedings, pp. 1-5, 1993.
    14.Davis J.L., T.A. Herring, I.I. Shapiro, A.E.E.Rogers, and G. Elgered, Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, 1593-1607, 1985.
    15.Evnevich T.V. and Dmitriev A.A., Empiric formulas for estimation of total content of moisture in the atmosphere above Moscow, Radiation regime and precipitation in Moscow, 2, Moscow University Publishing, pp. 277-285, 1967.
    16.Elgered G., Davis J. L., Herring T. A., and Shapiro I. I., Geodesy by radio interferometery: Water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 96, 6541-6555, 1991.
    17.Houghton J.T. (ed.), The global climate, Cambridge University, p. 277, 1984.
    18.Leckner B., The spectral distribution of solar radiation at the earth surface - elements of a model, Solar energy 20(2), 143-150, 1978.
    19.Leick A.,R. B., GPS Satellite Surveying, John Wiley & Sons, New York, 1995.
    20.Liou, Y. A., C. Y. Huang, and Y. T. Teng, Precipitable water observed by ground-based GPS receivers and microwave radiometry, Earth, Planets, and Space, 52, 6, 445-450, 2000.
    21.Liou, Y. A., Y. T. Teng, T. Van Hove, and J. Liljegren, Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, J. Appl. Meteor, 40, 1, 5-15, 2001.
    22.Owens, J. S., Optical refractive index of air, Dependence on pressure, temperature, and composition, 6, 51-59, 1967.
    23.Rocken C., Sensing atmospheric water vapor with the Global Positioning System, Geo. Res. Let., 20, 2, 631-634, 1993.
    24.Smith E. K. and Weintraub S., The constants in the equations for atmospheric refractive index frequence, Proc IEEE, 41, 1035-10.37, 1953.
    25.Sivkov S.I.,Methods to computer solar radiation characteristics. Gidrometeorologicheskoye izdatelstvo, Leningrad , p. 232, 1968.
    26.Thayer D., An improved equation for the radio refractive index of air. Radio Sci., 9, 803-807, 1974.
    27.Tralli, D. M. and S. M. Lichten, Stochastic estimation of troposphereic path delay in Global Postitioning System geodetic measurements, Bull. Geod., 64, 127-159, 1990.
    28.Tregoning, P.,R. Boers, D. O’Brien, and M. Hendy. Accuracy of absolute precipitable water vapor estimates from GPS observations,
    J. Geophys. Res., 103, 28, 701-28, 710, 1998.
    29.Wu, P., J. Hamada,S. Mori, Y. Tauhid, and M. D. Yamanka, Diurnal Variation of Precipitable Water over a Mountainous Area of Sumatra Island, J. Appl. Meteor., 42, 8, 1107–1115, 2003.
    30.http://61.56.13.9/data.php

    QR CODE
    :::