跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳翠涵
Tran Thuy Quy Hien
論文名稱: DNA detection by Al-decorated nitride SERS substrate
指導教授: 賴昆佑
Kun-Yu Lai
簡汎清
Chien, Fan-Ching
Le Vu Tuan Hung
Le Vu Tuan Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 51
中文關鍵詞: DNA detectionAl plasmonicSERS substrate
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(surface enhanced Raman spectroscopy, SERS)是一種利用電漿效應及化學效應增強拉曼散射的技術。此種散射增強技術,可以讓我們藉由分子震盪所產生的特定光譜,了解分子的結構,而且具備許多優點,例如高靈敏度、高辨識度、高通量等。在本研究中,我們利用鋁奈米顆粒及氮化物 SERS 基板,評估去氧核醣核酸deoxyribonucleic acid, DNA)的感測效果。
    氮化物 SERS 基板含有 InGaN 量子井,在雷射光的激發下,此量子井可提供大量的電荷至 SERS活性區,因而放大拉曼訊號。使用 Al 奈米顆粒的目的,是要搭配 488 nm 的光源,產生局部表面電漿共振的效應,藉此增強 DNA 的 SERS 訊號。我們發現,利用這種新式的 SERS 基板,可在
    免標記的條件下,感測到 10-6 M 的單股胞嘧啶(cytosine)DNA。此外,此量子井 SERS 基板,也能分辨腫瘤 DNA 雜交後產生的特定拉曼訊號。


    Surface-enhanced Raman scattering (SERS) is a light-intensifying technique that combines plasmonic enhancement and chemical enhancement, significantly boosting Raman signals. This technique delivers structural information produced by particular molecular vibrations, and has many advantages, such as high sensitivity, high selectivity and rapid-detection, etc. In this study, a nitride SERS substrate decorated by Al nanoparticles was fabricated for the detection of deoxyribonucleic acid (DNA). The substrate was built with InGaN quantum wells (QWs), from which abundant electronic charges, under laser excitation, were transferred to the SERS-active regions and thereby amplified SERS signals. The Al nanoparticles were adopted to induce localized surface plasmon resonance at the excitation wavelength of 488 nm. It was found that the label-free Al-decorated QW SERS substrate can achieve the detection limit of 10-6 M for 19-mer cytosine single-stranded DNA. The nitride substrate was also able to differentiate the hybridization event of circulating tumor DNA.

    CHINESE ABSTRACT 2 ENGLISH ABSTRACT 3 ACKNOWLEDGMENT 4 TABLE OF CONTENTS 5 LIST OF FIGURES 8 LIST OF TABLES 10 LIST OF ABBREVIATIONS 11 Chapter 1 13 INTRODUCTION 13 1.1. Motivation and overview 13 1.2. Surface enhanced Raman scattering (SERS) 14 1.2.1. Theory of Surface enhanced Raman scattering 14 1.2.2. Application of SERS 20 1.3. Deoxyribonucleic Acid (DNA) structure 20 1.4. SERS substrate for DNA detection 22 1.4.1. SERS substrate for DNA detection 22 1.4.2. DNA hybridization 24 1.5. Thesis overview: Introduction of each chapter 26 Chapter 2 28 EXPERIMENT 28 2.1. The fabrication of SERS substrate 28 2.2. Sample preparation 28 2.2.1. Cleaning process 28 2.2.2. Metal deposition 29 2.2.3. Annealing process 29 2.2.4. DNA immobilization and hybridization on the Alumina substrates 30 2.3. Measurement 30 Chapter 3 32 RESULTS AND DISCUSSIONS 32 3.1. The selection of optimizing condition 32 3.1.1. Excitation laser wavelength 32 3.1.2. Kind of metal 34 3.2. Optimizing the fabrication of SERS substrate 37 3.2.1. Thickness of metal 37 3.2.2. Annealing Temperature 40 3.3. Detection limits 43 3.4. DNA hybridization 45 Chapter 4 48 CONCLUSIONS AND FUTURE WORKS 48 4.1. Conclusions 48 4.2. Future works 48 REFERENCES 49

    CHINESE ABSTRACT I
    ENGLISH ABSTRACT II
    ACKNOWLEDGMENT III
    TABLE OF CONTENTS IV
    LIST OF FIGURES V
    LIST OF TABLES VI
    LIST OF ABBREVIATIONS VII
    Chapter 1 1
    INTRODUCTION 1
    1.1. Motivation and overview 1
    1.2. Surface enhanced Raman scattering (SERS) 2
    1.2.1. Theory of Surface enhanced Raman scattering (SERS) 2
    1.2.2. Application of SERS 8
    1.3. Deoxyribonucleic Acid (DNA) structure 8
    1.4. SERS substrate for DNA detection 10
    1.4.1. SERS substrate for DNA detection 10
    1.4.2. DNA hybridization 12
    1.5. Thesis overview: Introduction of each chapter 14
    Chapter 2 15
    EXPERIMENT 15
    2.1. The fabrication of SERS substrate 15
    2.2. Sample preparation 15
    2.2.1. Cleaning process 15
    2.2.2. Metal deposition process 16
    2.2.3. Annealing process 16
    2.2.4. DNA immobilization and hybridization on the Alumina substrates 17
    2.3. SERS measurement 18
    Chapter 3 19
    RESULTS AND DISCUSSIONS 19
    3.1. The selection of optimizing condition 19
    3.1.1. Excitation laser wavelength 19
    3.1.2. Metal types 22
    3.2. Optimizing the fabrication of SERS substrate 25
    3.2.1. Metal thickness 25
    3.2.2. Annealing Temperature 28
    3.3. Detection limits 31
    3.4. DNA hybridization 33
    Chapter 4 36
    CONCLUSIONS AND FUTURE WORKS 36
    4.1. Conclusions 36
    4.2. Future works 36
    REFERENCES 37

    QR CODE
    :::