跳到主要內容

簡易檢索 / 詳目顯示

研究生: 棗厥庸
Chueh-Yung Tsao
論文名稱: 如何以金融市場的交易軌跡建立財務計量模型
Financial Modeling Based on the Trajectory Domain
指導教授: 陳樹衡
Shu-Heng Chen
陳錦村
Jing-Twen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 92
語文別: 中文
論文頁數: 113
中文關鍵詞: 軌跡域模型自我組織圖圖形分析事件研究法
外文關鍵詞: Trajectory-Domain Model, Event Study Approach, Self-Organizing Maps, Charting Analysis
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金融市場中的圖形分析(charting analysis)在實務界已存在多年,然而學術界中對於類似的研究仍相當稀少,本文的主要目的乃是對圖形分析進行系統性的研究,這樣的研究可分為兩部分來說明,首先是如何確認市場中的型態(pattern),其次是型態確認後的市場異常行為分析。在型態確認方面,本研究利用類神經網路中的自我組織圖(self-organizing maps),對金融市場中的交易軌跡進行計量建模,這樣的模型我們稱之為軌跡域模型(Trajectory-Domain Model, TDM)。藉由軌跡域模型的使用,市場中的型態可自動的被擷取出來,而非以往文獻中只是外生給定一個型態進行研究。研究發現在不同的市場中可找出類似的型態,另一方面也發現軌跡域模型在不同的市場有不同的配適能力。在型態確認後的異常行為分析上,我們首先將型態視為一個事件,接下來便可利用事件研究法(event study approach)進行異常報酬分析。研究發現某些型態被確認後,市場確實在未來出現異常報酬,而這些異常報酬是不能被許多財務議題所解釋,例如市場價差、非同步交易、報酬率的異質變異、短期動能效應等。


    Using Kohonen''s self-organizing maps (SOMs), this research takes a systematic and automatic approach to charting into consideration, or more generally, geometric pattern recognition. Such a model is referred to be as the trajectory-domain model (TDM). By applying trajectory-domain models to financial time series, financial patterns are automatically discovered. To see whether these patterns transmit signals, a rigorous analysis of the aftermath behavior of the pattern is conducted based on the event study approach. The procedure proposed in this research therefore starts a formal analysis of financial charts, which has long been used by financial analysts and perceived by econometricians, but has not been put into a closer examination. To some extent, we find that the SOM is an ideal tool to simulate human intelligence in finding or creating patterns that summarize and store useful aspects of our perceptions.

    1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Limitation . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Outline of the Thesis . . . . . . . . . . . . . . . . 6 2 Literature Review 7 2.1 Methodology . .. . . . . . . . . . . . . . . . . . . . 7 2.2 Empirical Analysis . . . . . . . . . . . . . . . . . . 9 3 The Trajectory-Domain Models 13 3.1 Self-OrganizingMaps . . . . . . . . . . . . . . . . . 13 3.1.1 What are SOMs? . .. . . . . . . . . . . . . . . . . 13 3.1.2 SOMs Training . . . . . . . . . . . . . . . . . . . 15 3.1.3 SOMs in Economics and Finance . . . . . . . . . . . 18 3.1.4 The Choice of SOM. . . . . . .. . . . . . . . . . . 18 3.2 Model Design . . . .. . . . . . . . . . . . . . . . . 20 3.3 EmpiricalModeling . . . . . . . . . . . . . . . . . . 22 3.3.1 The Data . . . . . . . . . . .. . . . . . . . . . . 22 3.3.2 Parameter Setting . . . . . . . . . . . . . . . . . 23 3.3.3 Results . . . . . . .. . . . .. . . . . . . . . . . 24 3.4 The Robustness of the TDMs . .. . . . . . . . . . . . 28 4 Information Content of the Patterns Discovered by TDMs 41 4.1 Preliminary Analysis . . . . . . . . . . . . .. . . . 43 4.2 Event Study Approach . . . . . . . . . . . . . . . . 45 4.2.1 Event and Estimation Periods . . . . . . . . . . . 45 4.2.2 GARCH-Mplus ARMA(1,1) . . . . . . . . . . . . . . . 48 4.2.3 Test Statistics . . . . . . . . . . . . . . . . . . 51 4.3 Empirical Results . . . . . . . . . . . . . . . . . . 54 4.3.1 Preliminary Results . . . . . . . . . . . . . . . . 54 4.3.2 Delay and Continuity of the Signal. . . . . . . . . 57 4.4 Life of Informative Patterns . . . .. . . . . . . . . 63 5 Concluding Remarks and Future Research 67 5.1 Concluding Remarks . . . . . . . . . . . . . . . . . 67 5.2 Discussion . . . . . . . . . . . . .. . . . . . . . . 68 5.3 Future Research . . . . . . . . . .. . . . . . . . . 69

    [1] Allen, F. and R. Karjalainen (1999), Using generic algorithms to find technical trading rules, Journal of Financial Economics 51, 245-271.
    [2] Beaver, W. H. (1968), The indormation content of annual earnings announcements, Journal of Accounting Research, supplement, 6, 67-92.
    [3] Binder, J. (1998), The event study methodology since 1969, Review of Quantitative Finance and Accounting, 11, 111-137.
    [4] Boehmer, E., J. Musumeci, and A.B. Poulsen (1991), Event-study methodology
    under conditions of event-induced variance, Journal of Financial Economics, 30,
    253-272.
    [5] Bollerslev, T., (1986), Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327.
    [6] Bollerslev, T., R.Y. Chou, and K.F. Kroner (1992), ARCH modeling on finance: a review of the theory and empirical evidence, Journal of Econometrics, 52, 5-59.
    [7] Campbell, J.Y., A.W. Lo, and A.C. MacKinlay (1997), The econometrics of financial markets, Princeton University Press.
    [8] Chang, K. and C. Osler (1994), Evaluating chart-based technical analysis: the headand-shoulders pattern in foreign exchange markets, Working Paper, Federal Reserve Bank of New York.
    [9] Chen, S.-H. and H. He (2003), Searching financial patterns with self- organizing maps, in S.-H. Chen and P. P. Wang (Eds.), Computational Intelligence in Economics and Finance, Springer.
    [10] Chen, S.-H. and C.-Y Tsao (2003), Self-organizing maps as a foundation for charting or geometric pattern recognition in financial time series, in Proceedings of the 2003 IEEE International Conference on Computational Intelligence for Financial Engineering (CIFEr2003), Hong Kong, March 20-23, 2003. 387-394. ISBN: 0-7803-7654-4.
    [11] Cowan, A.R. (1992), Nonparametric event study tests, Review of Quantitative Finance and Accounting, 2, 343-358.
    [12] Cowan, A.R. and A.M.A. Sergeant (1996), Trading frequency and event study test specification, Journal of Banking and Finance, 20, 1731-1757.
    [13] Deboeck, G. and T. Kohonen (1998), Visual Explorations in Finance with Self-Organizing Maps, Springer.
    [14] Demark, T. R. (1994), The New Science of Technical Analysis, Wiley.
    [15] Dittenbach, M., Merkl, D. and Rauber, A. (2000), The growing hierarchical selforganizing map, In S.-I. Amari, C. L. Giles, M. Gori, and V. Piuri (Eds.), Proceedings of the International Joint Conference on Neural Networks (IJCNN 2000), Vol. 6, pp. 15-19, July 24-27, Como, Italy, IEEE Computer Society.
    [16] Enders, W. (1995), Applied Econometric Time Series, Wiley.
    [17] Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007.
    [18] Engle, R.F., D.M. Lilien, and R.P. Robins (1987), Estimating time-varying risk premia in the term structure: the ARCH-M model, Econometrica, 55, 391-407.
    [19] French, K.R., G.W. Schwert, and R.F. Stambaugh (1987), Expected stock returns and volatility, Journal of Financial Economics, 19, 3-29.
    [20] Haykin, S.S. (1994), Neural Networks: A Comprehensive Foundation, New York:
    MacMillan.
    [21] Hayter, A.J. (1990), A one-sided studentized range test for testing against a simple ordered alternative, Journal of the American Statistical Association, 85, 778-785.
    [22] Huang, Z. (1997), A fast clustering algorithm to cluster very large categorical data sets in data mining, First Asia Pacific Conference on Knowledge Discovery and Data Mining, Singapore, World Scientific, February.
    [23] Jegadeesh, N. and S. Titman (1993). Returns to buying winners and selling losers: implications fot stock market efficiency, Journal of Finance, 48, 65-91.
    [24] Kaski, S., T. Honkela, K. Lagus, and T. Kohonen (1998), WEBSOM – Self-organizing maps of document collections, Neurocomputing, 21, 101-117.
    [25] Kohonen, T. (1982), Self-organized foundation of topologically correct feature maps, Biological Cybernetics, 43, 59-69.
    [26] Kohonen, T. (2001), Self-Organizing Maps, 3rd Edition, Springer.
    [27] Kuo, R.J., L.M. Ho, and C.M. Hu (2002), Integration of self-organizing feature map and K-means algorithm for market segmentation, Computers & Operations Research, 29, 1475-1493.
    [28] Lam, K. and K.C. Lam (2000), Forecasting for the generation of trading signals in financial markets, Journal of Forecasting, 19, 39-52.
    [29] Lo, A. W., H. Mamaysky and J. Wang (2000), Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. Journal of Finance, 55, 1705-1765.
    [30] MacKinlay, A.C. (1997), Event studies in economics and finance. Journal of Economic Literature, 35, 13-39.
    [31] Osler, C. and K. Chang (1995), Head and shoulders: not just a flaky pattern. Staff Report No. 4, Federal Reserve Bank of New York.
    [32] Pattel, J.M. (1976), Corporate forecasts of earnings per share and stock price behavior: empirical tests, Journal of Accounting Research, 14, 246-76.
    [33] Polani, D and T. Uthmann (1993), Training kohonen feature maps in different
    topologies: an analysis using genetic algorithms, Proceedings of the Fifth International Conference on Genetic Algorithms, 1993, Morgan Kaufmann, ISBN 1-55860-299-2.
    [34] Roll, R. (1984), A simple implicit measure of the effective bid-ask spread in an efficient market, Journal of Finance, 39, 1127-1139.
    [35] Vesanto, J. and E. Alhoniemi (2000), Clustering of the self-organizing map, IEEE Transactions on Neural Networks, 11:3, 586-600.

    QR CODE
    :::