| 研究生: |
陳順佳 Shun-Jia Chen |
|---|---|
| 論文名稱: |
探討酵母菌中non-AUG起始點的周邊序列對轉譯起始效率的影響 Efficiency of a non-AUG initiator is drastically affected by its sequence context in yeast |
| 指導教授: |
王健家
chien-chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 周邊序列 、轉譯起始密碼 、酵母菌 |
| 外文關鍵詞: | sequence context, translation initiator, yeast |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前的研究指出,酵母菌中GRS1基因進行轉譯時,能夠分別使用UUG以及下游的AUG密碼作為轉譯起始點。而本篇論文主旨在於證明GRS1基因進行轉譯時,核醣體辨認個別的轉譯起始密碼之機制主要是利用leaky scanning的方式。不同於利用AUG作為轉譯起始點,當使用non-AUG密碼作為轉譯起始點時,其轉譯起始效率受到起始點兩側的核苷酸序列影響很大,其中又以相對於轉譯起始點-1、-2和-3位置的核苷酸影響最大。我們研究發現對於轉譯起始效率,這三個特殊位置最好及最差的核苷酸組合序列分別為A/A/X (X 為 A或G) 和C/G/C。當UUG起始點的 -3 ~ -1核苷酸由AAA改變成CGC時,其轉譯起始效率減少32倍之多,且導致粒線體蛋白質功能的喪失。雖然之前文獻指出AUG轉譯起始密碼對其周邊序列並不敏感,但當我們將其周邊序列 -3 ~ -1由AAA突變成CGC時,其轉譯效率也降低了8倍,這結果顯示,AUG的效率其實也會受到周邊序列的影響。由我們研究結果顯示,在酵母菌中轉譯起始點的周邊序列對於轉譯起始效率比之前研究的結果都還要重要許多。
Previous studies have shown that translation of the yeast GRS1 gene is alternatively initiated from a UUG and a downstream AUG triplet. Evidence presented here shows that recognition of these two initiators is mainly mediated by a mechanism known as leaky scanning. Unlike an AUG initiator, efficiency of the non-AUG initiator is drastically affected by its flanking sequences. In particular, the nucleotides at its relative positions -1, -2, and -3. A/A/X (X represents A or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequences -3 ~ -1 from AAA to CGC reduces the initiating activity of the UUG initiator up to 32-fold and results in loss of mitochondrial activity. While an AUG initiator is in general unresponsive to context changes, an AAA(-3 ~ -1) to CGC mutation still reduces its initiating activity up to 8-fold under similar conditions. These results suggest that sequence context is more important than previously expected for initiation in yeast.
Abramczyk D, Tchorzewski M, Grankowski N (2003) Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 20: 1045-1052
Acland P, Dixon M, Peters G, Dickson C (1990) Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 343: 662-665
Bennetzen JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. J. Biol. Chem. 257: 3018-3025
Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266: 16965-8.
Carter Jr CW (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chang KJ, Wang CC (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279: 13778-13785
Chang KJ, Lin G, Men LC, Wang CC (2006) Redundancy of non-AUG initiators:A clever mechanism to enhance the efficiency of translation in yeast. J. Biol. Chem. 281: 7775-7783
Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57
Cigan AM, Pabich EK, Donahue TF (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2964-2975
Clements JM, Laz TM, Sherman F (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4533-4536
Dietrich A, Weil JH, Maréchal-Drouard L (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Annu. Rev. Cell. Biol. 8: 115-131
Donahue TF, Cigan AM (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8: 2955-2963
Felter S, Diatewa M, Schneider C, Stahl AJ (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Giegé R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035
Hann SR, Sloan-Brown K, Spotts GD (1992) Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev. 6: 1229-1240
Huang HY, Kuei Y, Chao HY, Chen SJ, Yeh LS, Wang CC (2006) Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J. Biol. Chem. 281: 31430-31439
Huang HY, Tang HL, Chao HY, Yeh LS, Wang CC (2006) An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol. Microbiol. 60: 189-198
Kozak M (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080
Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305
Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870
Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Martinis SA, Schimmel P (1996) in Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243
Packham G, Brimmell M, Cleveland JL (1997) Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem. J. 328: 807-813
Pelchat M, Lapointe J (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347
Riechmann JL, Ito T, Meyerowitz EM (1999) Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana. Mol. Cell. Biol. 19: 8505-8512
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi''s sarcoma-associated herpesvirus. J. Virol. 73: 5722-5730
Saris CJ, Domen J, Berns A (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10: 655-664
Sherman F, Stewart JW, Schweingruber AM (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20: 215-222
Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Slusher LB, Gillman EC, Martin NC, Hopper AK (1991) mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc. Natl. Acad. Sci. USA 88: 9789-9793
Souciet G, Menand B, Ovesna J, Cosset A, Dietrich A, Wintz H (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854
Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J. Biol. Chem. 279: 49656-49663
Turner RJ, Lovato M, Schimmel P (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275: 27681-27688
Unbehaun A, Borukhov SI, Hellen CU, Pestova TV (2004) Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 18: 3078-3093
Wang, C. C., Chang, K. J., Tang, H. L., Hsieh, C. J., Schimmel, P. (2003) Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42: 1646-51.
Wolfe CL, Lou YC, Hopper AK, Martin NC (1994) Interplay of heterogeneous transcriptional start sites and translational selection of AUGs dictate the production of mitochondrial and cytosolic/nuclear tRNA nucleotidyltransferase from the same gene in yeast. J. Biol. Chem. 269: 13361-13366
Yoon H, Donahue TF (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol. Microbiol. 6: 1413-1419
Zitomer RS, Walthall DA, Rymond BC, Hollenberg CP (1984) Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol. Cell. Biol. 4: 1191-1197
張光容 (2003) 酵母菌GRS1基因的轉譯起始機制之研究 中央大學 生命科學研究所 碩士論文
黃曉芸 (2005) 酵母菌ALA1基因轉譯起始機制的研究 中央大學 生命科學研究所 碩士論文