跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊崑暉
Kun-Hui Yang
論文名稱: 壓應力效應下優選方向Cu(111) -Pd與Cu(220)-Pd之交互擴散行為研究
Study of Cu-Pd interdiffusion in preferred Cu(111) and Cu(220) under compressive stress 研 究
指導教授: 劉正毓
Cheng-Yi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 68
中文關鍵詞: 應力效應擴散擴散係數
外文關鍵詞: stress effect, diffusion, diffusion coefficient
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著IC 的線寬不斷縮小並接近至極限時,3D IC 的技術發展能使
    系統之效能及功能提昇,其概念是利用垂直晶片疊覆(chip stacking)
    的方式將晶片構裝,其中,W2W 封裝方式效率高而成為未來發展的
    主流。另外,在Thin-GaN LED 方面,W2W鍵合技術也因為發光面
    積大、垂直式電流導通結構以及較均勻電流分散等特性,將是未來主
    要發展的趨勢。W2W bonding 在金屬接合技術有兩個種類:(1) 固態
    金屬與液態金屬鍵結、(2) 固態金屬與固態金屬鍵結。其中,固態/
    固態金屬鍵合是未來發展的重要趨勢,原因在於低溫晶圓鍵合技術可
    以有效減少金屬界面層交互擴散的行為,進而避免高溫鍵合界面中介
    金屬化合物形成,避免造成脆性的界面,而避免嚴重的交互擴散現象
    所造成元件特性的破壞。除了上述的狀況,低溫晶圓鍵合亦會降低不
    同晶圓材料間鍵合時,因熱膨脹係數差異所造成的熱應力的問題,因
    此,發展低溫固態鍵合是重要的議題。
    透過固態/固態金屬鍵結中原子擴散研究:平行於擴散軸施加壓應
    力對於固態金屬間交互擴散中的整體自由能會增加,進一步導致原子
    擴散所要跨越的能障降低的概念,並且在施加壓應力後對於兩種不同
    優選方向電鍍銅層可以影響銅鈀交互擴散能障。本研究針對這些議題
    設計實驗並以Boltzmann 分布中原子能跨越能障進行擴散的機率概
    念,逐步探討在施加壓壓力效應下主導在銅(111)與銅(220)晶格優選
    方向系統裡有明顯擴散行為差異以及關鍵因素。


    In recent years, three-dimensional integrated circuit (3D IC) has been
    agreed as the next generation semiconductor technology with the
    advantages of small form factor, high-performance, low power
    consumption, and high density integration. In the 3 type bonding
    technology: chip-to-chip, chip-to-wafer, and wafer-to-wafer.,
    wafer-to-wafer technology can be applied for homogeneous integration of
    high yielding devices and plays important role in productive efficiency of
    3D IC. However, wafer-to-wafer bonding technology also has the
    advantages in Thin-GaN LED: (1) uniform current spreading and (2) high
    emitting area. Therefore, wafer-to-wafer technology will be important
    technology in the future.
    In wafer-to-wafer technology, solid/solid metal bonding has the
    property that bonding can be finished at low temperature (150~250℃). It
    will be important for future development: (1) Prevent the formation of
    intermediary metal compounds (IMC) at bonding interface, (2) Avoid the
    residual stress which produced by CTE mismatch in high temperature
    process. Compare with Cu-Cu direct bonding, we find that Cu-Pd-Cu
    bonding can be finished at lower bonding temperature. Importantly,
    external stress can reduce the finished bonding temperature, which be
    attributed to reduced energy barrier in solid state interdiffusion. Therefore,
    base on the concepts of successful atom-vacancy diffusion’s probability
    in Boltzmann distribution, the important factor in the difference between
    Cu(111)-Pd and Cu(200)-Pd with external stress will be discussed.

    中文摘要 I Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-2 晶圓鍵合技術運用在垂直式thin-GaN LED 製程 3 1-3 Cu-Pd-Cu 晶圓鍵合實驗與研究動機 28 第二章 文獻回顧 9 2-1 未來3D IC 封裝趨勢 9 2-2 金屬接合技術種類 12 2-2-1 液態金屬/固態金屬接合技術 13 2-2-2 固態金屬/固態金屬接合技術 15 2-3 低溫固態/固態金屬接合對thin-GaN 垂直式LED 光電表現 的重要性 17 第三章 實驗方法與步驟 28 3-1 不同結構銅(優選方向)對Cu-Pd 鍵合影響研究 31 3-2 XPS 縱深分析 32 3-3 Cu/Pd 間交互擴散係數計算 33 第四章 實驗結果與討論 36 4-1 實驗結果分析 36 4-2 外加應力對固態/固態金屬交互擴散係數的影響 40 4-3 晶格優選方向影響migration volume 探討 48 第五章 結論 51 參考文獻 53

    [1] M. Alexe and U. Gösele, Wafer bonding: applications and technology vol. 75: Springer Science & Business Media, 2013.
    [2] C.-T. Ko and K.-N. Chen, "Low temperature bonding technology for 3D integration," Microelectronics reliability, vol. 52, pp.302-311, 2012.
    [3] Y. Kuru, M. Wohlschlögel, U. Welzel, and E. Mittemeijer,"Interdiffusion and stress development in Cu–Pd thin film diffusion couples," Thin Solid Films, vol. 516, pp. 7615-7626, 2008.
    [4] S. Inomata and M. Kajihara, "Diffusion-induced recrystallization in the Cu (Pd) system at complete solid-solution temperatures,"
    Journal of Materials Science, vol. 46, pp. 2410-2421, 2011.
    [5] S. Liu and X. Luo, LED packaging for lighting applications:design, manufacturing, and testing: John Wiley & Sons, 2011.
    [6] A. Bukaluk, "AES studies of interdiffusion in thin-film copper–palladium multilayer structures," Vacuum, vol. 54, pp.279-283, 1999.
    [7] J. Chakraborty, U. Welzel, and E. Mittemeijer, "Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples," Thin Solid Films, vol. 518, 2010.
    [8] Z.-H. Zhu, F. E. Ejeckam, Y. Qian, J. Zhang, Z. Zhang, G. L.Christenson, et al., "Wafer bonding technology and its applications in optoelectronic devices and materials," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 3, pp. 927-936, 1997.
    [9] J. H. Lau, "TSV manufacturing yield and hidden costs for 3D IC integration," in Electronic Components and Technology Conference
    (ECTC), 2010 Proceedings 60th, 2010, pp. 1031-1042.
    [10] J. H. Lau, "Overview and outlook of through-silicon via (TSV) and 3D integrations," Microelectronics International, vol. 28, pp. 8-22,2011.
    [11] P. Ramm, J. J.-Q. Lu, and M. M. Taklo, Handbook of Wafer Bonding: John Wiley & Sons, 2012.
    [12] J. H. Lau and T. G. Yue, "Thermal management of 3D IC integration with TSV," in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 635-640.
    [13] M. Alam, Y. Chan, and K. Tu, "Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn–Ag solder and Au/electroless Ni (P)/Cu bond pad,"
    Journal of applied physics, vol. 94, pp. 4108-4115, 2003.
    [14] Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, "Wafer-level Cu–Cu bonding technology," Microelectronics Reliability, vol. 52, pp.312-320, 2012.
    [15] D. Zhao, S. Xu, M. Xie, S. Tong, and H. Yang, "Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire," Applied physics letters, vol. 83, pp.677-679, 2003.
    [16] X. Li, X. Ni, J. Lee, M. Wu, Ü . Ö zgür, H. Morkoç, et al.,"Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes," Applied Physics Letters, vol. 95, p.1107, 2009.
    [17] C. Chang, Y. Chuang, and C. Liu, "Ag∕ Au Diffusion Wafer Bonding for Thin-GaN LED Fabrication," Electrochemical and Solid-State Letters, vol. 10, pp. H344-H346, 2007.
    [18] R. Abbaschian and R. Reed-Hill, Physical metallurgy principles: Cengage Learning, 2008.
    [19] U. Mizutani, Hume-Rothery rules for structurally complex alloy phases: CRC Press, 2010.
    [20] P. Subramanian and D. Laughlin, "Cu-Pd (copper-palladium),"Journal of phase equilibria, vol. 12, pp. 231-243, 1991.
    [21] K.-N. Tu, J. W. Mayer, and L. C. Feldman,"Electronic Thin Film Sciences," ed: Macmillan College Publishing Company, New York,1992.
    [22] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass,et al., "A logic nanotechnology featuring strained-silicon," Electron Device Letters, IEEE, vol. 25, pp. 191-193, 2004.
    [23] P. Kringhøj, A. N. Larsen, and S. Y. Shirayev, "Diffusion of Sb in strained and relaxed Si and SiGe," Physical review letters, vol. 76, p. 3372, 1996.
    [24] M. J. Aziz, "Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms," Applied physics
    letters, vol. 70, pp. 2810-2812, 1997.
    [25] G. E. Murch, Diffusion in crystalline solids: Academic Press, 2012.
    [26] R. J. Borg and G. J. Dienes, An introduction to solid state diffusion:Elsevier, 2012.
    [27] T.-S. Huang, "intermetallic compound formation at Sn/Cu interface and Kirkendall voids formation at Sn/Cu interface," 2013.

    QR CODE
    :::