| 研究生: |
藍尚文 Shang-Wen Lan |
|---|---|
| 論文名稱: |
一般式鉛鈣鈦礦太陽能電池之高分子電洞傳遞層之研究 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 鈣鈦礦 、高分子 、電洞傳遞層 、混摻高分子 、界面修飾劑 |
| 外文關鍵詞: | Perovskite, Polymer, Hole Transport Layer, Polymer Alloy, Interface Modifier |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池(Perovskite Solar Cells, 簡稱PSCs)常用的電洞傳遞材料(HTM)有金屬氧化物、有機小分子、及有機高分子,其中有機高分子HTM具有高耐熱性、高疏水性、易製備成連續且高品質的薄膜等特性,可以提高PSC元件的光伏表現。本研究以實驗室自行合成的高分子P15做為電洞傳遞層(HTL)。P15是疏水性材料,鈣鈦礦是親水性材料,所以將P15旋塗至鈣鈦礦時會有界面不相容的問題,導致光電轉換效率(PCE)僅有15.08%,因此在P15及鈣鈦礦之間沉積一層兩性的高分子PDTON;或著將P15與PDTON混合後作為電洞傳遞層(HTL)。與純P15作為HTL時相比,PDTON做為界面層時P15的電洞遷移率為原本的1.5倍,PDTON與P15混合做為HTL時,電洞遷移率為原本的2.5倍;對應到PL及TRPL,PDTON做為界面層或與P15混合時皆有較低的螢光強度及載子壽命(1.79 ns減少至1.24及0.92 ns)。GIWAXS中顯示PDTON做為界面層或與P15混合時,接有較高的結晶度,代表高分子薄膜的品質較好。同時PDTON親水端的氧及氮也可與鈣鈦礦膜中配位未飽和的Pb2+作用,從FTIR中觀察到PDTON與PbI2混合後,其C-N及C-O鍵往低波數位移,從XPS中觀察到鈣鈦礦膜中鉛的4f電子的binding energy有往低能量位移0.2 eV,其缺陷密度也從5.56*10^15 cm^-3降低至1.54*10^15 cm^-3。以P15做為HTL並經由PDTON做界面修飾後所組裝的元件的最高光電轉換效率達15.92%,PDTON與P15混合做為HTL所組裝的元件的最高光電轉換效率達18.82%。P15做為HTL所組裝的元件未封裝放置於相對溼度20%、溫度30℃的環境下在經過22個小時後維持原效率的47%,而PDTON與P15混合做為HTL所組裝的元件經過22小時後維持原效率的59%, PDTON做為界面層並以P15做為HTL所組裝的元件經過22小時後維持原效率的59%
Metal oxides, organic small molecules, and organic polymers are commonly used as hole transport materials (HTMs) for perovskite solar cells (PSCs). Among them, organic polymer HTMs have high thermal stability, hydrophobicity, and a continuous thin films can be easily formed, which can enhance the photovoltaic performance of PSCs. In this study, a D-A type conjugated polymer P15, developed by our laboratory, was used as the hole transport material (HTM) for regular PSCs.P15 is a hydrophobic material, while perovskite is a hydrophilic material.When P15 is spin-coated onto perovskite, there has an interface incompatibility issue, resulting in a low power conversion efficiency (PCE) of 15.08%. To solve this problem, a dual-function polymer called PDTON is deposited between P15 and perovskite to be an interface modification layer, or a mixture of P15 and PDTON was used as the HTL. Compared to using pure P15 as the HTL, the hole mobility of P15 was increased by 1.5 times when PDTON was used as the interface layer, and it increased by 2.5 times when P15 was mixed with PDTON as the HTL. Regarding photoluminescence (PL) and time-resolved photoluminescence (TRPL), both PDTON as the interface layer and the PDTON-P15 mixture exhibited lower fluorescence intensity and carrier lifetimes (reduced from 1.79 ns to 1.24 ns and 0.92 ns). GIWAXS analysis indicated higher crystallinity for the polymer films when PDTON was used as the interface layer or mixed with P15, suggesting improved film quality. However, the oxygen and nitrogen at the hydrophilic end of PDTON can coordinate with the unsaturated Pb2+ in the perovskite film. FTIR shows that after mixing with PbI2, the C-N and C-O bonds in PDTON shift to lower wavenumbers, and XPS shows that the binding energy of the Pb2+ 4f electrons in the perovskite film shifts to lower energy by 0.2 eV. As a result the defect density of perovskite film decreases from 5.56*10^15 cm^-3 to 3.11*10^15 cm^-3. Devices assembled with P15 as the HTL, modified with PDTON as the interface layer, achieved a maximum PCE of 15.92%, while devices assembled with a PDTON-P15 mixture as the HTL reached 18.82%. When exposed to an environment with 20% relative humidity and a temperature of 30°C for 22 hours, devices with P15 as the HTL maintained 47% of original efficiency, whereas devices with a PDTON-P15 mixture as the HTL maintained 59% of original efficiency, and those with PDTON as the interface layer and P15 as the HTL also maintained 59% of original efficiency.
1. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050.
2. Min, H., et al., Perovskite Solar Cells With Atomically Coherent Interlayers on SnO2 Electrodes. Nature, 2021. 598(7881): p. 444-450.
3. Chiang, C.-H., J.-W. Lin, and C.-G. Wu, One-Step Fabrication of A Mixed-Halide Perovskite Film for A High-Efficiency Inverted Solar Cell and Module. Journal of Materials Chemistry A, 2016. 4(35): p. 13525-13533.
4. Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu, Planar Heterojunction Perovskite/PC71BM Solar Cells with Enhanced Open-Circuit Voltage via a (2/1)-Step Spin-Coating Process. Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903.
5. Chiang, C.-H., et al., The Synergistic Effect of H2O and DMF Towards Stable and 20% Efficiency Inverted Perovskite Solar Cells. Energy & Environmental Science, 2017. 10(3): p. 808-817.
6. Wu, C.-G., et al., High Efficiency Stable Inverted Perovskite Solar Cells Without Current Hysteresis. Energy & Environmental Science, 2015. 8(9): p. 2725-2733.
7. Chiang, C.-H. and C.-G. Wu, A Method for The Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor. ACS nano, 2018. 12(10): p. 10355-10364.
8. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific reports, 2012. 2(1): p. 591.
9. Schulz, P., et al., Interface Energetics in Organo-Metal Halide Perovskite-Based Photovoltaic Cells. Energy & Environmental Science, 2014. 7(4): p. 1377-1381.
10. Hawash, Z., L.K. Ono, and Y. Qi, Moisture and Oxygen Enhance Conductivity of LiTFSI‐Doped Spiro‐MeOTAD Hole Transport Layer in Perovskite Solar Cells. Advanced Materials Interfaces, 2016. 3(13): p. 1600117.
11. Kasparavicius, E., et al., Long‐Term Stability of the Oxidized Hole‐Transporting Materials Used in Perovskite Solar Cells. Chemistry–A European Journal, 2018. 24(39): p. 9910-9918.
12. Yang, J., et al., Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ techniques. ACS nano, 2015. 9(2): p. 1955-1963.
13. Juarez-Perez, E.J., et al., Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer. Chemistry of Materials, 2016. 28(16): p. 5702-5709.
14. Wang, T., et al., Efficient Inverted Planar Perovskite Solar Cells Using Ultraviolet/Ozone‐Treated NiOx as the Hole Transport Layer. Solar RRL, 2019. 3(6): p. 1900045.
15. Rao, H., et al., A 19.0% Efficiency Achieved in CuOx-Based Inverted CH3NH3PbI3−xClx Solar Cells by an Effective Cl Doping Method. Nano Energy, 2016. 27: p. 51-57.
16. Sun, W., et al., Room-Temperature and Solution-Processed Copper Iodide as the Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale, 2016. 8(35): p. 15954-15960.
17. Arora, N., et al., Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science, 2017. 358(6364): p. 768-771.
18. Gowri Manohari, A., et al., Inorganic Hole Transport Layers in Inverted Perovskite Solar Cells: A Review. Nano select, 2021. 2(6): p. 1081-1116.
19. Heo, J.H., et al., Efficient Inorganic–Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nature Photonics, 2013. 7(6): p. 486-491.
20. Fu, Q., et al., Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022. 144(21): p. 9500-9509.
21. Rombach, F.M., S.A. Haque, and T.J. Macdonald, Lessons Learned from Spiro-OMeTAD and PTAA in Perovskite Solar Cells. Energy & Environmental Science, 2021. 14(10): p. 5161-5190.
22. Zhang, H., et al., Ultraviolet-light induced H+ doping in polymer hole transport material for highly efficient perovskite solar cells. Materials Today Energy, 2022. 30: p. 101159.
23. Zheng, X., et al., Photoactivated p-doping of organic interlayer enables efficient perovskite/silicon tandem solar cells. ACS Energy Letters, 2022. 7(6): p. 1987-1993.
24. Xu, D., et al., Constructing Molecular Bridge for High-Efficiency and Stable Perovskite Solar Cells Based on P3HT. Nature Communications, 2022. 13(1): p. 7020.
25. Tan, Y., et al., Indolocarbazole-Core Linked Triphenylamine as an Interfacial Passivation Layer for Perovskite Solar Cells. Journal of materials chemistry. A, Materials for energy and sustainability, 2022. 1(13): p. 7173-7185.
26. Zhang, Q., et al., Toward a Universal Polymeric Material for Electrode Buffer Layers in Organic and Perovskite Solar Cells and Organic Light-Emitting Diodes. Energy & environmental science, 2018. 11(3): p. 682-691.
27. 楊庭菽, 合成應用於高分子太陽能電池的含苯並[1,2-b:4,5-b']二噻吩為骨架之D-π-A共聚物, in 化學學系. 2017, 國立中央大學: 桃園縣. p. 178.
28. 張稟琛, 開發作為一般式鈣鈦礦太陽能電池電洞傳遞材料之D-A type高分子, in 化學學系. 2021, 國立中央大學: 桃園縣. p. 139.