| 研究生: |
卓文浩 Wen-Hao Cho |
|---|---|
| 論文名稱: |
高溫熱處理對光學薄膜特性影響及應用 Effect and Applications of High Temperature Heat Treatment on Optical Thin Films |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 多孔性光學濾光片 、尖晶石 、薄膜擴散 |
| 外文關鍵詞: | Porous optical filter, Spinel, Diffusion in thin film |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用高溫熱處理方式,研究高溫下材料交互擴散及孔隙擴
散及對薄膜材料的影響與改變,以及所造成的折射率變化作深入分析,
並依據擴散機制完成非均勻薄膜製作,其中包含Ta2O5/TiO2、
Al2O3/MgO、Al2O3/ZnO 等材料組合,三種材料組合在高溫熱處理下
的擴散現象各有不同,其中Ta2O5/TiO2 組合在800oC 下單純以材料濃
度梯度造成交互擴散現象, 可應用於漸變折射率膜層設計。
Al2O3/MgO 組合在800oC 下兩材料會進行交互擴散,並在介面生成二
次相MgAl2O4,同時在擴散速率較快的MgO 層產生微小孔洞,孔洞
生成降低MgO 膜層等效折射率,而Mg 原子擴散至Al2O3 膜層中形
成MgAl2O4 則提高原Al2O3 層折射率,使高低折射率差異由原本0.11
增大為0.14135,約增大28.5 %。利用此現象製做(Al2O3 MgO)8 Al2O3
多層膜經800oC、4 小時熱處理可得到(MgAl2O4 MgO+voids)8 MgAl2O4
之膜層結構,因熱處理後使得高低折射率材料位置互換,以及高低折
射率材料差異擴大,故可得到反射率約61%之反射濾光片,並與模擬
數值一致。Al2O3/ZnO 材料組合在800oC 下ZnO 與Al2O3 介面生成二
次相ZnAl2O4,孔洞大量生成於ZnO 層,降低ZnO 折射率,完全反
應後ZnO 層中孔隙率達58.6 %,折射率降為1.357。
In this study, the influence of solid state diffusion on refractive index of thin films had been studied using thermal annealing method at high temperature. Base on solid state diffusion mechanism, we prepared three different material pairs, including Ta2O5/TiO2, Al2O3/MgO, Al2O3/ZnO. Each of these material pairs represented a different diffusion situation. Only interdiffusion phenomenon appeared at the interface of Ta2O5 and TiO2 at annealing temperature of 800oC and made the graded refractive index layer. According to the concept, we could design the rugate filter employed the suitable material pair. In Al2O3/MgO case, MgAl2O4 spinel layer growth between MgO and Al2O3 during annealing process of 800oC. Besides, some voids developed in the MgO layer and the apparent refractive index of MgO layer was decreased. The voids were caused by the faster diffusion rate of MgO than Al2O3 and increased the refractive index difference of 28.5% between high and low refractive index materials in the multilayer. Base on the reaction mechanism of Al2O3 and MgO, (Al2O3 MgO)8 Al2O3 multilayer would become (MgAl2O4 MgO+voids)8 MgAl2O4 after annealing process of 800oC for 4 hours. After annealing process, the positions of high and low refractive index materials exchanged, and the effective refractive indices of MgO layers were decreased due to the presence of voids. Beside, the refractive index difference of the multilayer was increased by 28%. Therefore, the reflective filter with 61% reflection at 300nm was obtained. The same as Al2O3/MgO pair, ZnAl2O4 spinel layer growth between ZnO and Al2O3 during annealing process of 800oC. A lot of voids developed in ZnO layer and caused much decrease in refractive index. The porosity of ZnO layer after annealing process achieves 58.6 % and the refractive index decreased to 1.357 at 550 nm wavelength.
參考文獻
[1]. 李正中, 薄膜光學與鍍膜技術. (藝軒圖書出版社, ed. 第五版).
[2]. C. C. Lee, C. W. Chu, "High Power CO2 Laser Mirror: a design." Appl. Opt. 26, 2544-2548 (1987).
[3]. C.-C. Lee, H.-L. Chen, J.-C. Hsu, C.-L. Tien, "Interference coatings based on synthesized silicon nitride." Appl. Opt. 38, 2078-2082 (1999).
[4]. K. Streubel, S. Rapp, J. André, N. Chitica, "1.26 μm vertical cavity laser with two InP/air-gap reflectors." Electron. Lett 32, 1369-1370 (1996).
[5]. D. Nesic, A. Nesic, "Bandstop microstrip PBG filter with sinusoidal variation of the characteristic impedance and without etching in the ground plane." Microw. Opt. Technol. Lett. 29, 418-420 (2001).
[6]. J. Minowa, Y. Fujii, "Subnanometer bandwidth interference filter for optical fiber communication systems." Appl. Opt. 27, 1385-1386 (1988).
[7]. H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition." SPIE 2253, 1343-1353 (1994).
[8]. H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition." Appl. Opt. 34, 667-675 (1995).
[9]. A. Zoller, R. Gotzelmann, K. Matl, D. Cushing, "Temperature-stable bandpass filters deposited with plasma ion-assisted deposition." Appl. Opt. 35, 5609-5612 (1996).
[10]. Y.-F. HUANG et al., "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures." Nat. Nanotechnol. 2, 770-774 (2007).
[11]. S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, "Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics." Appl. Phys. Lett. 93, 251108 (2008).
[12]. C. C. Lee, H. C. Chen, C. C. Jaing, "Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition." Appl. Opt. 44, 2996-3000 (2005).
[13]. C.-C. Lee, D. T. Wei, J.-C. Hsu, C.-H. Shen, "Influence of Oxygen on Some Oxide Films by Ion Beam Sputter Deposition." Thin Solid Films 290, 88-93 (1996).
[14]. J.-C. Hsu, C.-C. Lee, "Single- and dual-ion-beam sputter deposition of titanium oxide films." Appl. Opt. 37, 1171-1176 (1998).
[15]. B. Agnarsson et al., "Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering." Thin Solid Films 545, 445-450 (2013).
[16]. K. Sarakinos, J. Alami, M. Wuttig, "Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering." J. Phys. D: Appl. Phys. 40, 2108-2114 (2007).
[17]. S.-H. Woo, S.-H. Kim, C. K. Hwangbo, "Optical and Structural Properties of TiO2 and MgF2 Thin Films by Plasma Ion-Assisted Deposition." J. Korean Phys. Soc. 45, 99-107 (2004).
[18]. R. C. Jayasinghe, A. G. U. Perera, H. Zhu, Y. Zhao, "Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors." Opt. Lett. 37, 4302-4304 (2012).
[19]. X.-Y. Guan, J. W. Leem, J. S. Yu, "Nanoporous TiO2-Based Distributed Bragg Reflectors for Near-Infrared Wavelength Applications." J. Nanosci. Nanotechnol. 15, 9650-9655 (2015).
[20]. S. Chhajed et al., "Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics." Appl. Phys. Express 4, 052503 (2011).
[21]. J.-Q. Xi et al., "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods." Opt. Lett. 31, 601-603 (2006).
[22]. F. J. Garcia-Garcia et al., "Low refractive index SiOF thin films prepared by reactive magnetron sputtering." Thin Solid Films 542, 332-337 (2013).
[23]. G.-R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, H.-S. Lin, "Low refractive index Si nanopillars on Si substrate." Applied Physics Letters 90, 181923 (2007).
[24]. C. Li, N. S. Colella, J. J. Watkins, "Low-Temperature Fabrication of Mesoporous Titanium Dioxide Thin Films with Tunable Refractive Indices for One-Dimensional Photonic Crystals and Sensors on Rigid and Flexible Substrates." ACS Appl. Mater. Interfaces 7, 13180-13188 (2015).
[25]. J. R. Castro Smirnov, Mauricio E. Calvo, H. Míguez, "Selective UV Reflecting Mirrors Based on Nanoparticle Multilayers." Adv. Funct. Mater. 23, 2805-2811 (2013).
[26]. E. Redel, P. Mirtchev, C. Huai, S. Petrov, G. A. Ozin, "Nanoparticle Films and Photonic Crystal Multilayers from Colloidally Stable, Size-Controllable Zinc and Iron Oxide Nanoparticles." ACS Nano 5, 2861-2869 (2011).
[27]. E. Redel et al., "Electrochromic Bragg Mirror: ECBM." Adv. Mater. 24, OP265-OP269 (2012).
[28]. Y. Zhang et al., "A convenient sol–gel approach to the preparation of nano-porous silica coatings with very low refractive indices." Chem. Commun. 50, 13813-13816 (2014).
[29]. D. Konjhodzic, S. Schröter, F. Marlow, "Ultra-low refractive index mesoporous substrates for waveguide structures." Phys. Status Solidi A 201, 3676-3688 (2007).
[30]. C. W. Mason, "Structural Colors in Insects. II." J. Phys. Chem. 31, 321-354 (1927).
[31]. C. W. Mason, "Structural Colors in Insects. III." J. Phys. Chem. 31, 1856-1872 (1927).
[32]. A. C. Neville, S. Caveney, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal." Biol. Rev. 44, 531-562 (1969).
[33]. H. Durrer, W. Villiger, "Schillerfarben von Euchroma gigantean (L.): (Coleoptera: Buprestidae): Elektronenmikroskopische Untersuchung der Elytra." Int. J. Insect Morphol. Embryol. 1, 233-240 (1972).
[34]. E. F. Schubert, J. K. Kim, J. Q. Xi, "Low-refractive-index materials: A new class of optical thin-film materials." physica status solidi (b) 244, 3002-3008 (2007).
[35]. Y. Kuo, "Etch mechanism in the low refractive index silicon nitride plasma‐enhanced chemical vapor deposition process." Appl. Phys. Lett. 63, 144-146 (1993).
[36]. J.-Q. XI et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection." Nature Photon. 1, 176-179 (2008).
[37]. G. Wicht, R. Ferrini, S. Schüttel, L. Zuppiroli, "Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings." Macromol. Mater. Eng. 295, 628-636 (2010).
[38]. Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, R. E. Cohen, "Hollow Silica Nanoparticles in UV−Visible Antireflection Coatings for Poly(methyl methacrylate) Substrates." ACS Nano 4, 4308-4316 (2010).
[39]. B. D. Hatton, K. Landskron, W. Whitnall, D. D. Perovic, G. A. Ozin, "Spin-Coated Periodic Mesoporous Organosilica Thin FilmsÐTowards a New Generation of Low-Dielectric-Constant Materials." Adv. Funct. Mater. 15, 823-829 (2005).
[40]. C. Shang et al., "Detailed microstructure analysis of as-deposited and etched porous ZnO films." Appl. Surf. Sci. 344, 242-248 (2015).
[41]. W. Greiner, L. Neise, H. Stöcker, Thermodynamics and statistical mechanics. (Springer-Verlag, 1995), pp. 101.
[42]. A. D. Smigelkas, E. O. Kirkendall, "Zinc diffusion in alpha brass." Trans. AIME 171, 130-134 (1947).
[43]. L. S. Darken, "Diffusion, mobility and their interrelation through free energy in binary metallic systems." Trans. Met. Soc. AIME 175, 184-201 (1948).
[44]. G. Glodán, C. Cserháti, I. Beszeda, D. L. Beke, "Production of hollow hemisphere shells by pure Kirkendall porosity formation in Au/Ag system." Appl. Phys. Lett. 97, 113109 (2010).
[45]. A. Bolk, "Kirkendall-effect in the gold-platinum system." Acta Metall. 6, 59-62 (1958).
[46]. A. Bolk, "Kirkendall effect and diffusion in the gold-platinum system—I: The Kirkendall effect." Acta Metall. 9, 632-642 (1961).
[47]. A. Bolk, "Kirkendall effect and diffusion in the gold-platinum system—II: The concentration penetration curves and the diffusion coefficients." Acta Metall. 9, 643-652 (1961).
[48]. M. O, G. Vakanas, N. Moelans, M. Kajihara, W. Zhang, "Formation of compounds and Kirkendall vacancy in the Cu–Sn system." Microelectron. Eng. 120, 133-137 (2014).
[49]. J.-M. Park, S.-H. Kim, M.-H. Jeong, Y.-B. Park, "Effect of Cu-Sn intermetallic compound reactions on the Kirkendall void growth characteristics in Cu/Sn/Cu microbumps." Jpn. J. Appl. Phys. 53, 05HA06 (2014).
[50]. H. Oikawa, A. Hosoi, "Interdiffusion in Cu-Sn solid solutions. confirmation of anomalously large kirkendall effect." Scripta Mater. 9, 823-828 (1975).
[51]. M. J. H. v. Dal, M. C. L. P. Pleumeekers, A. A. Kodentsov, F. J. J. v. Loo, "Diffusion studies and re-examination of the Kirkendall effect in the Au-Ni system." J. Alloys Compd. 309, 132-140 (2000).
[52]. P. Ratchev, S. Stoukatch, B. Swinnen, "Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads." Microelectronics Reliability 46, 1315-1325 (2006).
[53]. L. G. Feinstein, J. B. Bindell, "The failure of aged Cu Au thin films by Kirkendall porosity." Thin Solid Films 62, 37-47 (1979).
[54]. G. Zhang, W. Wang, Q. Yu, X. Li, "Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres - Kirkendall-Effect-Induced Growth and Related Properties." Chem. Mater. 21, 969-974 (2009).
[55]. H. J. Fan, U. Gosele, M. Zacharias, "Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review." Small 3, 1660-1671 (2007).
[56]. F. Güder et al., "Improved optical properties of ZnO thin films by concurrently introduced interfacial voids during thermal annealing." Appl. Phys. Lett. 99, 023105 (2011).
[57]. Q. Peng et al., "Bi-directional Kirkendall Effect in Coaxial Microtube Nanolaminate Assemblies Fabricated by Atomic Layer Deposition." ACS Nano 3, 546-554 (2009).
[58]. Q. Li, R. M. Penner, "Photoconductive Cadmium Sulfide Hemicylindrical Shell Nanowire Ensembles." Nano Lett. 5, 1720-1725 (2005).
[59]. Y. Yin et al., "Formation of hollow nanocrystals through the nanoscale Kirkendall Effect." Science 304, 711-714 (2004).
[60]. W. A. Deer, R. A. Howie, J. Zussman, An Introduction to the Rock-forming Minerals. (ed. 2nd, 1992), pp. 558-569.
[61]. H. J. Fan, Y. Yang, M. Zacharias, "ZnO-based ternary compound nanotubes and nanowires." J. Mater. Chem. 19, 885-900 (2008).
[62]. H. S. C. O'Neill, W. A. Dollase, "Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4." Phys. Chem. Miner. 20, 541-555 (1994).
[63]. R. F. Cooley, J. S. Reed, "Equilibrium cation distribution in NiAl2O4, CuAl2O4, and ZnAl2O4." J. Am. Ceram. Soc. 55, 395-398 (1972).
[64]. D. Carta et al., "A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals." J. Phys. Chem. C 113, 8606-8615 (2009).
[65]. C. Kittel, Introduction to solid state physics. (Wiley, Canada, 1996), pp. 379-390.
[66]. D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective." Am. J. Phys. 50, 704-709 (1982).
[67]. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, "Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation." Appl. Opt. 35, 90-96 (1996).
[68]. L. Ward, The optical constants of bulk materials and films. (IOP publishing Ltd, England, 1998), pp. 236-262.
[69]. R. E. CARTER, "Mechanism of Solid-state Reaction Between Magnesium Oxide and Aluminum Oxide and Between Magnesium Oxide and Ferric Oxide." Journal of American Ceramic Society 44, 116-120 (1961).
[70]. C. N. R. Rao, J. Gopalakrishnan, NEW DIRECTIONS IN SOLID STATE CHEMISTRY. (Cambridge University Press, 1997), pp. 488-490.
[71]. E. B. WATSON, J. D. PRICE, "Kinetics of the reaction MgO + Al2O3 → MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000°C and 1.0 to 4.0 GPa." Geochim. Cosmochim. Acta 66, 2123-2138 (2002).