跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳柏宗
Bo-Tsung Wu
論文名稱: Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
指導教授: 高永旭
Yung-Hsi Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 91
語文別: 中文
論文頁數: 64
中文關鍵詞: 綠茶唲茶素
外文關鍵詞: EGCG
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在我們之前的研究中發現綠茶中所含有的唲茶素,尤其是
    EGCG,能夠抑制3T3-L1 前脂肪細胞的生長或是誘發其凋亡,然而
    這些現象可能導因於EGCG 改變了細胞週期的動態變化。因此,我
    們利用pTargeTTM 載體建構出Cdk2 過度表達和顯性抑制(將Cdk2 基
    因序列上Asp145 突變為Asn145)的穩定表達的鼠類3T3-L1 前脂肪細胞
    株作為研究素材,且更進一步地實驗確認Cdk2 是否在EGCG 所調控
    的3T3-L1 前脂肪細胞的生長或凋亡上,扮演一必要性之角色。在實
    驗中,我們發現在沒有EGCG 處理的環境下,Cdk2 過度表達的細胞
    數較Cdk2 顯性抑制型的細胞數約增加了50%,且降低了細胞週期
    G1 期約20%,增加了磷酸化Histone H1 的活性;另外,Cdk2 過度表
    達的細胞的生長速度也較Cdk2 顯性抑制型、Lac Z 轉殖型的細胞來
    得快。在不同轉殖的細胞中處理20~100μM 的四種綠茶唲茶素後,
    只有EGCG 可以降低野生型和Lac Z 轉殖型的細胞數,而對Cdk2 過
    度表達型的細胞影響不大;但所有的綠茶唲茶素皆對Cdk2 顯性抑制
    型的細胞沒有產生任何作用。同樣地,EGCG 會使野生型的細胞週期
    延滯約10%,對於Cdk2 過度表達的細胞週期影響不大,但卻不會改
    變Cdk2 顯性抑制的細胞週期動態。Cdk2 顯性抑制型的細胞不論在
    EGCG 有無的環境下,皆會有細胞凋亡而產生DNA 梯度、Sub-G1 期
    的現象。利用免疫沉澱將有無處理EGCG 之不同轉殖細胞的Cdk2 沉
    澱下來,再用西方點墨法觀察細胞週期抑制蛋白p18、p21、p27 與
    Cdk2 的結合量,結果並沒有很大的差異。因此,我們斷定EGCG 在
    抑制3T3-L1 前脂肪細胞的生長及誘發其凋亡上,是透過一Cdk2 途
    徑,且有別於其他的綠茶唲茶素;其作用機制則細胞週期抑制蛋白與
    Cdk2 的結合無關。


    Previously we have found that green tea catechins, particularly EGCG, inhibit
    growth and induce apoptosis of 3T3-L1 preadipocytes and such effects result from its
    altering different phases of cell cycle. Using 3T3-L1 preadipose cell lines
    transfected with pTargeTTM plasmid containing either wild type of cyclin-dependent
    kinase 2 (CDK2) or CDK2-dominant negative (CDK2-dn) gene mutated from Asp145
    of CDK2 to Asn145, we further examined whether CDK2 was essential in the EGCG
    modulation of preadipocyte growth and apoptosis. As indicated by 50% increases in
    cell number, 20% lower in G1 phase of cell cycle, and higher activity in
    phosphorylating Histone H1, CDK2-overexpressed cells in the absence of EGCG
    treatment grew faster than vector-transfected cells or CDK2-dn cells. At 20-100 µM,
    EGCG, but not structurally-related EC, ECG, or EGC, reduced cell number by 30-50%
    in wild type of cells and vector-transfected cells, and, to a lesser extent, in
    CDK2-overexpressed cells; however, all catechins had no effect on CDK2-dn cells.
    Also, EGCG arrested normal cells by 10% and, to a much lesser extent,
    CDK2-overexpressed cells in G1 phase, but did not alter the G1 percentage of
    CDK2-dn cell cycle. CDK2-dn cells displayed the similar extent of apoptosis, as
    indicated by the appearance of DNA ladder and sub-G1 phase of cell cycle, when they
    were treated with or without EGCG. CDK2 immunoprecipitates from normal,
    vector-transfected, CDK2-transfected, or CDK2-dn cells treated with or without
    EGCG contained the corresponding amounts of CDK2 inhibitors such as p18, p21, or
    p27. We conclude that EGCG mediate growth and apoptosis of preadipocytes
    through CDK2-dependent pathway and such pathway of EGCG action seems different
    from other green tea catechins and may not rely on the binding between CDK2 and
    CDK2 inhibitors.

    中文摘要1 英文摘要2 第一章:緒論3 一、Cdk2 的簡介3 二、綠茶唲茶素6 三、綠茶與Cdk2 9 四、研究動機與目的10 第二章:材料與方法12 一、實驗材料12 二、實驗方法13 1. 細胞培養13 2. 細胞處理13 3. 細胞計數方法14 4. Cdk2-overexpress 與Cdk2-dominant negative 表現載體 (expressing vector )之構築14 4.1 定點突變14 4.2 Total RNA 萃取15 4.3 cDNA 的合成16 4.3.1 primer 的設計16 4.3.2 反轉錄酶反應(Reverse Transcriptase, RT) 16 4.3.3 聚合酶鏈反應(Polymerase chain reaction) 17 4.4 PCR 產物的製備18 4.4.1 PCR 產物的分析18 4.4.2 PCR 產物的純化18 4.5 接和反應(Ligation) 19 4.6 大腸桿菌勝任細胞之製備(Preparation of E. coli competent cells) ,, 19 4.7 大腸桿菌的轉型作用(Transformation) ,20 4.8 篩選(Screening) 20 4.8.1 藍白篩選21 4.8.2 質體DNA 的少量製備21 4.8.3 核酸限制酶剪切22 4.9 核酸定序(DNA sequencing) 22 5. Cdk2-overexpressed 與Cdk2-dominant negative 基因於 哺乳類細胞中之表現23 5.1 質體pTargeT-Cdk2-overexpress 及pTargeT- Cdk2- dominant negative 的轉染(Transfection) 23 5.1.1 細胞的培養23 5.1.2 轉染作用23 6. 細胞流式分析法24 7. 蛋白質濃度定量25 8. 西方點墨法25 9. 蛋白質免疫沉澱法26 10. Cdk2 活性測定27 11. DNA 梯度分析法27 第三章:結果29 一、Cdk2 過度表達穩定表現細胞株之建立29 二、Cdk2 顯性抑制穩定表現細胞株之建立29 三、比較野生型、過度表達型、顯性抑制型三種細胞株 的生長曲線30 四、比較野生型、過度表達型、顯性抑制型三種細胞株 的細胞週期31 五、比較野生型、過度表達型、顯性抑制型三種細胞株 的Cdk2 表達量及活性變化32 六、綠茶EGCG 影響野生型、過度表達型、顯性抑制型三種 細胞株的生長32 七、不同綠茶唲茶素對於野生型、過度表達型、顯性抑 制型三種細胞株的生長影響之比較34 第四章:討論35 第五章:結論與展望39 第六章:參考文獻40 第七章:附錄60 表圖目錄V 縮寫與全名對照表Ⅵ

    第六章參考文獻
    Ahmad, N., Adhami, V. M., Gupta, S., Cheng, P., and Mukhtar, H. (2002). Role of the
    retinoblastoma (pRb)-E2F/DP pathway in cancer chemopreventive effects of
    green tea polyphenol epigallocatechin-3-gallate, Arch Biochem Biophys 398
    Ahmad, N., Cheng, P., and Mukhtar, H. (2000). Cell cycle dysregulation by green tea
    polyphenol epigallocatechin-3-gallate, Biochem Biophys Res Commun 275
    34.
    Allison, D. B., and Fontaine, K. R. (1999). Annual deaths attribuatable to obesity in
    the Unite States, JAMA 282 1530-1538.
    Bradfield, A. E., and Bata-Smith, E. C. (1950). Chromatographic behavior and
    chemical structure:the tea catechins, Biochem Biophys Acta 4 441-444.
    Bray, G. A., and Tartaglia, L. A. (2000). Medicinal strategies in the treatment of
    obesity, Nature 404 72-677.
    Chen, L., Lee, M. J., Li, H., and Yang, C. S. (1997). Absorption, distribution,
    elimination of tea polyphenols in rats, Drug Metab Dispos 25 1045-50.
    Chen, W. J., Chang, C. Y., Lin, J.K. (2003). Induction of G1 phase arrest in MCF
    human breast cancer cells by pentagalloyl glucose through the down-regulation of
    CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and
    p21(Cip), Biochem Pharmacol. 65 1777-85.
    Cheng, M., Olivier, P., Diehl, J. Fero, M., Roussel, M., JM, R., and Sherr, C. (1999).
    The p21(Cip1) and p27(Kip1) CDK ''inhibitors'' are essential activators of cyclin
    D-dependent kinases in murine fibroblasts, EMBO J. 18 1571-83.
    Chung, L. Y., Cheung, T. C., Kong, S. K., Fung, K. P., Choy, Y. M., Chan, Z. Y., and
    Kwok, T. T. (2001). Induction of apoptosis by green tea catechins in human
    prostate cancer DU145 cells, Life Sci 681 207-14.
    Deng, J., Hua, K., and Lesser, S. S. (2000). Activation of signal transducer and
    activator of transcription-3 during proliferative of 3T3-L1 adipogenesis,
    Endocrinology 142 370-2376.
    Dobashi, Y., Kudoh, T., Matsumine, A., Toyoshimas, K., and Akiyama, T. (1995).
    Constitutive overexpession of cdk2 inhibits differentiation of rat
    pheochromocytoma PC12 cells, J. Biol. Chem. 270 23031-23037.Dulloo, A., G,
    and Duret, C. (1999). Efficacy of a green tea extract rich in catechin polyphenols
    and caffeine in increasing 24-h expenditure and fat oxidation in humans, Am J
    Clin Nutr 70 1040-1045.
    Dvorakova, K., Dorr, R. T., Valcic, S., Timmermann, B., and Alberts, D. S. (1999).
    Pharmacokinetics of the green tea derivative, EGCG, by the topical route of
    administration in mouse and human skin, Cancer Chemother Pharmaco l43 331-5.
    Graham, H. N. (1992). Green tea composition,consumption,and polyphenol chemistry,
    Prev Med 21 334-350.
    Gupta, S., Ahmad, N., Nieminen, A. L., and Mukhtar, H. (2000). Growth inhibition,
    cell-cycle dysregulation, and induction of apoptosis by green tea constituent
    (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive
    human prostate carcinoma cells, Toxicol Appl Pharmacol 64 2-90.
    Harmon, A. W., and Harp, J. B. (2001). Differential effects of flavonoids on 3T3-L1
    adipogenesis and lipolysis, Am J Physiol Cell Physiol 280 C807-13.
    Harrls, T. E., Albrecht, J. H., Nakanishi, M., and Darlington, G. J. (2001).
    CCAAT/Enhancer-binding Protein- Cooperates with p21 to Inhibit
    Cyclin-dependent Kinase-2 Activity and Induces Growth Arrest Independent of
    DNA Binding, J. Biol. Chem. 276 29200-29209.
    Hayakawa, S., Saeki, K., Sazuka, M., Suzuki, Y., Shoji, Y., Ohta, T., Kaji, K., Yuo, A.,
    and Isemura, M. (2001). Apoptosis induction by epigallocatechin gallate involves
    its binding to Fas, Biochem Biophys Res Commun 285 1102-6.
    Heuvel, S. V. D., and Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in
    cell cycle control, A.A.C . 262 2050-2054.
    Hu, B., Jayashree, M., Heuvel, S. V. D., and Enders, G. H. (2001). S and G2 phase
    roles for cdk2 revealed by inducible expression of a dominant negative mutant in
    human cells, Mol. Cell. Biol. 21 2755-2766.
    Islam, S., Islam, N., Kermode, T., Johnstone, B., Mukhtar, H., Moskowitz, R. W.,
    Goldberg, V. M., Malemud, C. J., and Haqqi, T. M. (2000). Involvement of
    caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human
    chondrosarcoma cells, Biochem Biophys Res Commun 270 793-7.
    Jung, Y. D., Kim, M. S., Shin, B. A., Chay, K. O., Ahn, B. W., Liu, W., Bucana, C. D.,
    Gallick, G. E., and Ellis, L. M. (2001). EGCG, a major component of green tea,
    inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma
    cells, Br J Cancer 84 844-50.
    Kao, Y. H., Hiipakka, R. A., and Liao, S. (2000). Modulation of endocrine systems
    and food intake by green tea epigallocatechin gallate, Endocrinology 141 980-7.
    Katdare, M., Osborne, M., and Telang, N. (2002). Soy isoflavone genistein modulates
    cell cycle progression and induces apoptosis in HER-2/neu oncogene expressing
    human breast epithelial cells, Int J Oncol. 21 809-15.
    Kavanagh, K. T., Hafer, L. J., Kim, D. W., Mann, K. K., Sherr, D. H., Rogers, A. E.,
    and Sonenshein, G. E. (2001). Green tea extracts decrease carcinogen-induced
    mammary tumor burden in rats and rate of breast cancer cell proliferation in
    culture, J Cell Biochem 82 387-98.
    Kelly, G., and Husband, A. (2003). Flavonoid compounds in the prevention and
    treatment of prostate cancer, Methods Mol Med. 81 377-94.
    Kopelman, P. G. (2000). Obesity as a medical problem, Nature 404 635-643.
    Lea Currie, Y. R., Monroe, D., and McIntosh, M. K. (1999). Dehydroepiandrosterone
    and related steroids alter 3T3-L1 preadipocyte proliferation and differentiation,
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123 17-25.
    Liang, Y. C., Lin Shiau, S. Y., Chen, C. F., and Lin, J. K. (1999). Inhibition of
    cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors
    p21 and p27 during growth arrest of human breast carcinoma cells by
    (-)-epigallocatechin-3-gallate, J Cell Biochem 75 1-12.
    Liang, Y. C., Lin, S. S. Y., Chen, C. F., and Lin, J. K. (1999). Inhibition of
    cyclin-dependent kinases 2 and 4 activities as well as induction of cdk inhibitors
    p21 and p27 during growth arrerst of human breast carcinoma cells by
    (-)-epigallocatechin-3-gallate, J.Cell.Biochem. 75 1-12.
    Liberto, M., and Cobrinik, D. (2000). Growth factor-dependent induction of p21(CIP1)
    by the green tea polyphenol, epigallocatechin gallate, Cancer Lett 154 151-61.
    Lopez-Lazaro, M., and Akiyama, M. (2002). Flavonoids as anticancer agents:
    structure-activity relationship study, Curr Med Chem Anti-Canc Agents. 2
    691-714.
    Manthey, J., and Guthrie, N. (2002). Anti proliferative activities of citrus flavonoids
    against six human cancer cell lines, J Agric Food Chem. 50 5837-43.
    Morgan, D. O. (1995). Principles of cdk regulation, Nature 374 131-134.
    Morrison, R. F., and Farmer, S. R. (1999). Role of PPARgamma in regulating a
    cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and
    p21(Waf1/Cip1), during adipogenesis, J Biol Chem 274 17088-97.
    Must, A., Field, A. E., and Dietz, W. H. (1999). the disease burden association with
    overweight and obesity, JAMA 282 1523-1529.
    Nakagawa, K., and Miyazawa, T. (1997). Chemiluminescence-high-performance
    liquid chromatographic determination of tea catechin, (-)-epigallocatechin
    3-gallate, at picomole levels in rat and human plasma, Anal Biochem 248 41-9.
    Nihal, A., Cheng, P., and Hasan, M. (2000). Cell cycle dysregulation by green tea
    polyphenol epigallocathchin-3-gallate, Biochem. Biophys. Res. Commun. 275
    328-334.
    Opare Kennedy, D., Kojima, A., Hasuma, T., Yano, Y., Otani, S., and Matsui Yuasa, I.
    (2001). Growth inhibitory effect of green tea extract and (-)-epigallocatechin in
    Ehrlich ascites tumor cells involves a cellular thiol-dependent activation of
    mitogenic-activated protein kinases, Chem Biol Interact 134 113-33.
    Paschka, A. G., Butler, R., and Young, C. Y. (1998). Induction of apoptosis in prostate
    cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate,
    Cancer Lett 130 1-7.
    Phelps, D. E., and Xiong, Y. (1998). Regulation of cyclin-dependent kinase 4 during
    adipogenesis involves switching of cyclin D subunits and concurrent binding of
    p18INK4c and p27Kip1, Cell Growth Differ 9 595-610.
    Rao, S., Lowe, M., Herliczek, T., and Keyomarsi, K. (1998). Lovastatin mediated G1
    arrest in normal and tumor breast cells is through inhibition of CDK2 activity and
    redistribution of p21 and p27, independent of p53, Oncogene. 17 2393-402.
    Reichert, M., and Eick, D. (1999). Analysis of cell cycle arrest in adipocyte
    differentiation, Oncogene 18 459-66.
    Richon, V. M., Lyle, R. E., and McGehee, R. E., Jr. (1997). Regulation and expression
    of retinoblastoma proteins p107 and p130 during 3T3-L1 adipocyte differentiation,
    J Biol Chem 272 10117-24.
    Saeki, K., Hayakawa, S., Isemura, M., and Miyase, T. (2000). Importance of a
    pyrogallol-type structure in catechin compounds for apoptosis-inducing activity,
    Phytochemistry 53 391-4.
    Sanjay, G., Tajamul, H., and Hasan, M. (2003). Molecular pathway for
    (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human
    prostate carcinoma cells, A.B.B. 410 177-185.
    Shime, H., Kariya, M., Orii, A., Momma, C., Kanamori, T., Fukuhara, K., Kusakari,
    T., Tsuruta, Y., Takakura, K., Nikaido, T., and Fujii, S. (2002). Tranilast inhibits
    the proliferation of uterine leiomyoma cells in vitro through G1 arrest associated
    with the induction of p21(waf1) and p53, J Clin Endocrinol Metab. 87 5610-7.
    Tai, T. Y., Chuang, L. M., and Wu, H. P. (1992). Association of body bulid with
    non-insulin-dependent diabets mellitus and hypertension among Chinese adults,
    IntJEpidemiol 21 511-517.
    Tan, X., Hu, D., Li, S., Han, Y., Zhang, Y., and Zhou, D. (2000). Differences of four
    catechins in cell cycle arrest and induction of apoptosis in LoVo cells, Cancer Lett
    158 1-6.
    Watanabe, J., and Niki, R. (1998). isolation and identification of acetyl-coA
    carboxylase inhibitors from green tea, Biosci Biophys Biochem 62 532-534.
    William, M., and Schlegel, R. (1996). Suppression of apoptosis by dominant negative
    mutants of cyclin-dependent protein kinases, J. Biol. Chem. 271 10205-10209.
    Yamamoto, T., and Juneja, L. R. (1997). Chemistry and application of green tea, CRC
    Press,Boca Raton,Florida.
    Yang, C. S., Chen, L., Lee, M. J., Balentine, D., Kuo, M. C., and Schantz, S. P.
    (1998a). Blood and urine levels of tea catechins after ingestion of different
    amounts of green tea by human volunteers, Cancer Epidemiol Biomarkers Prev 7
    351-4.
    Yang, G. Y., Liao, J., Kim, K., Yurkow, E. J., and Yang, C. S. (1998b). Inhibition of
    growth and induction of apoptosis in human cancer cell lines by tea polyphenols,
    Carcinogenesis 19 611-6.
    Yu, Z., Zhang, L., and Wu, D. (2003). Genistein induced apoptosis in MCF-7 and
    T47D cells, Wei Sheng Yan Jiu 32 125-7.

    QR CODE
    :::