| 研究生: |
鄭元富 Yuan-Fu Cheng |
|---|---|
| 論文名稱: |
具排列的空時區塊編碼之空間調變的進階結果 Futher Results of Space-Time Block Coded Spatial Modulation with Permutations |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 空間調變 、空時區塊碼 |
| 外文關鍵詞: | SM, STBC |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同累積區塊中的時間排列(TP-DAB),可以應用於現有的STBC-SM架構以提
高頻譜效率。然而,檢測複雜度高,限制了套用在STBC-SM架構的應用。我們提出了
一種低複雜度的最大可能性(ML)檢測器,此技術通過降低檢測器內部計算矩陣的次
數,保證錯誤性能,其乘法複雜度大幅低於原始ML檢測器。除了頻寬效益的優勢之
外,電腦模擬結果也表明,在不同數量的發射天線(𝑁𝑇=4,6,8)下,使用TP-DAB
的STBC-SM架構比原始架構提供更好的錯誤表現。特別是當累積區塊個數等於碼字個
數時,我們觀察到編碼增益顯著,顯示了TP-DAB的優勢。然而,當累積區塊數量超
過五個時,檢測複雜度呈現增加趨勢。針對此問題,我們提出了另一種改進的非最大
可能性檢測方法,雖然犧牲了錯誤率性能,但能有效降低在大量累積區塊下的加法複
雜度。
Temporal Permutation Distributed Antenna Block (TP-DAB) can be applied to existing
Space-Time Block Code Spatial Modulation (STBC-SM) architectures to enhance spectral
efficiency. However, the high complexity of detection has limited its application within the
STBC-SM framework. We propose a low-complexity Maximum Likelihood (ML) detector,
which reduces the frequency of internal computation matrix operations, thus ensuring error
performance while significantly decreasing the multiplicative complexity compared to the
original ML detector. In addition to the advantages in bandwidth efficiency, computer
simulations demonstrate that the TP-DAB-enhanced STBC-SM architecture provides superior
error performance under various numbers of transmit antennas (𝑁𝑇 = 4,6,8). Particularly when
the number of accumulated blocks equals the number of codewords, we observed a significant
coding gain distance, highlighting the benefits of TP-DAB. However, as the number of
accumulated blocks exceeds five, the complexity of detection tends to increase. To address this
issue, we have developed an improved non-maximum likelihood detection method, which,
although it sacrifices some error rate performance, effectively reduces the complexity of
addition in scenarios with a large number of accumulated blocks.
參考文獻
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans.
Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection
and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless
systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
[4] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial
modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter
2015.
[5] M. Wen, B. Zheng, K. J. Kim, M. Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir,
“A survey on spatial modulation in emerging wireless systems: Research progresses and
applications”, IEEE J. Select. Areas Commun., vol. 37, pp. 1949-1972, Sep. 2019.
[6] E. Basar, U. Aygolu, E. Panayirci and H. V. Poor, “Space-time block coded spatial
modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823-832, Mar. 2011.
[7] X. Li and L. Wang, “High rate space-time block coded spatial mod- ulation with cyclic
structure,” IEEE Commun. Lett., vol. 18, no. 4, pp. 532535, Apr. 2014.
[8] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “Enhanced-reliability cyclic generalized
spatial-and-temporal modulation,” IEEE Commun. Lett., vol. 20, no. 12, pp. 23742377,
Dec. 2016.
[9] L. Wang, “Stacked Alamouti based spatial modulation,” IEEE Trans. Commun., vol. 67,
no. 1, pp.336-349, Jan. 2019.
41