跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂韋成
Wei-cheng Lu
論文名稱: 不同樁排列方式之自承式鋼軌樁擋土系統之離心模擬
BEHAVIOR OF CANTILEVER SOLDIER-PILED WALLS WITH DIFFERENT PILE ARRANGEMENTS
指導教授: 李崇正
Chung-Jung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 178
中文關鍵詞: 開挖鋼軌樁雙排樁自承式鋼軌樁
外文關鍵詞: Excavation, Double-rail pile wall, Self-supported soldier pile, Soldier pile
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自承式鋼軌樁開挖工法,適用於良好地質條件下的大面積地下室
    開挖工程,具有成本低廉及易於堅硬土層施工與施工快速等優點。使
    用自承式雙排鋼軌樁開挖工法的主要目的,在於提高鋼軌樁擋土系統
    的勁度,減少水平支撐設施的使用,提高人員施作效率、縮短施工工
    期與增加開挖深度。
    本研究利用離心模型試驗,藉由模擬開挖過程,探討於砂土層中
    以自承式鋼軌樁擋土系統作為擋土設施時,改變雙排鋼軌樁排間距與
    樁長或利用三排鋼軌樁等不同的樁排列方式,對自承式鋼軌樁擋土系
    統穩定性的影響。另外亦探討在不同的開挖與貫入深度比下,不同樁
    排列方式之擋土系統對鄰近地盤之影響程度。
    研究結果顯示,砂土層中以自承式雙排鋼軌樁擋土系統作為擋土
    設施時增大排間距或以三排樁作為擋土設施時,能有效的降低因開挖
    所引致的地表沉陷、牆體變位與樁身的受力,有助於擋土系統之穩
    定;而增長雙排鋼軌樁擋土系統之樁長有助於開挖深度的增加。因開
    挖所引致之地表沉陷槽皆屬於三角槽型,且影響範圍皆為鋼軌樁擋土
    壁壁後1.2 倍樁長。從試驗結果得知,將雙排與三排鋼軌樁擋土系統
    視為一等值單排鋼軌樁擋土系統來進行穩定分析,為一可行之方法。


    Self-supported soldier pile wall system is eminent for its superiority
    on low cost and easy construction when being applied in the vertical
    excavations. Its advantages are reducing the deflection of the retaining
    wall, shortening the working hour and increasing the depth of excavation.
    In this research, a series of centrifuge modeling tests were conducted
    to simulate the process of excavation with self-supported soldier pile wall
    retaining system. The simulations of various excavation depths with
    different spacing between the front and rear row piles in double-row-pile
    or the triple-row-pile wall system were being carried out to study the
    effects upon adjacent area.
    The test results show that the self-supported double soldier pile wall
    system can effectively reduce the surface settlement, horizontal
    displacement, tilt angle and maximum bending moment. In the
    double-pile-row retaining wall system, with the increase of the distance
    between the front and rear row makes the retaining wall become more
    stable. Increasing the quantity of rows of retaining wall system can
    reduce the deformation and improve the stability of the double-pile-row
    retaining wall system. Increasing the length of piles of retaining wall
    system can reduce the deformation and improve the stability of the
    retaining wall system, and can also effectively increase the depth of
    excavation. When a self-supported soldier wall was selected to be the
    retaining system in sandy layer, the shape of the ground settlement
    induced by the excavation in this study was a triangular one. The affected
    area was 1.2 times the pile length behind the wall. According to this
    research, the multi-pile-row retaining wall system can be treated as a
    equivalent single row system, and a simplified stability analyzing method
    is fully adopted.

    中 文 摘 要.............................................................................Ⅰ 英 文 摘 要.............................................................................Ⅱ 目 錄.........................................................................................Ⅲ 表 目 錄...................................................................................Ⅴ 圖 目 錄...................................................................................Ⅵ 照 片 目 錄.............................................................................Ⅹ 符 號 說 明.............................................................................XI 第一章 序論.............................................................................1 1-1 序…...........................................................................................1 1-2 研究動機及目的.......................................................................2 1-3 研究架構...................................................................................2 1-4 論文內容...................................................................................3 第二章 文獻回顧.....................................................................4 2-1 懸臂式擋土牆分析理論...........................................................4 2-2 現場觀測分析………...............................................................9 2-3 數值分析方法.........................................................................12 2-4 物理模型試驗.........................................................................14 2-4-1 1g 下之物理模型試驗..............................................................14 2-4-2 離心模型試驗...........................................................................15 2-5 離心模型原理.........................................................................21 2-5-1 離心模型之基本相似律...........................................................22 2-5-2 離心模型試驗之模型模擬.......................................................25 第三章 試驗土樣、儀器設備及試驗方法............................52 3-1 試驗土樣.................................................................................52 3-2 試驗儀器及相關設備.............................................................52 3-2-1 地工離心機...............................................................................52 3-2-2 模型試驗箱...............................................................................53 3-2-3 移動式霣降機...........................................................................54 3-2-4 模型鋼軌樁檔土系統...............................................................56 3-2-5 開挖模擬系統...........................................................................57 3-2-6 相關量測儀器...........................................................................57 3-3 砂試體準備與試驗步驟.........................................................58 3-3-1 試體準備...................................................................................58 3-3-2 離心模型試驗...........................................................................59 第四章 試驗結果與分析.......................................................82 4-1 試驗種類與回歸分析.............................................................82 4-1-1 試驗種類…………..............................................................83 4-1-2 回歸分析…………..............................................................84 4-2 鋼軌樁樁身彎矩分佈.............................................................86 4-2-1 雙排鋼軌樁之彎矩分佈............................................................86 4-2-2 三排鋼軌樁之彎矩分佈............................................................88 4-2-3 雙排鋼軌樁與三排鋼軌樁之彎矩分佈比較............................90 4-3 鋼軌樁樁頂水平變位與地表沉陷.........................................92 4-3-1 鋼軌樁樁頂水平變位...............................................................92 4-3-2 地表沉陷型態...........................................................................95 4-3-3 地表沉陷槽分佈範圍...............................................................97 4-4 鋼軌樁樁頂旋轉角與樁體變形分析...................................99 4-4-1 鋼軌樁樁頂旋轉角.................................................................99 4-4-2 鋼軌樁樁體變形分析.............................................................101 4-5 鋼軌樁樁體剪力與地盤反力分析.......................................104 4-5-1 樁身所承受之剪力.................................................................104 4-5-2 地盤反力分析.........................................................................105 4-6 自承式鋼軌樁擋土系統穩定分析.......................................107 4-6-1 單排鋼軌樁擋土系統.............................................................107 4-6-2 雙排鋼軌樁擋土系統.............................................................110 4-6-3 簡化穩定分析……….............................................................112 第五章 結論與建議.............................................................170 5-1 結論.......................................................................................169 5-2 建議.......................................................................................170 參考文獻.................................................................................172

    [1] 李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模
    型試驗」,岩盤工程研討會論文集,中壢,第649-669 頁(1994)。
    [2] 陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中
    央大學土木工程學系,中壢(1996)。
    [3] 莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士
    論文,國立中央大學土木工程學系,中壢(1996)。
    [4] 陳志豪,「懸臂式擋土牆開挖之離心模型試驗」,碩士論文,國立
    中央大學土木工程學系,中壢(2003)。
    [5] 江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立
    中央大學土木工程學系,中壢(2003)。
    [6] 林婷媚,「雙排樁無支撐擋土結構壁體變形行為之研究」,碩士論
    文,國立雲林科技大學營建工程學系,雲林(2003)。
    [7] 林貽謙,「自承式鋼軌樁擋土系統之離心模擬」,碩士論文,國立
    中央大學土木工程學系,中壢(2006)。
    [8] 黃文璽,「自承式雙排鋼軌樁擋土系統穩定性之研究」,碩士論
    文,國立中央大學土木工程學系,中壢(2006)。
    [9] 歐章煜、謝百鉤,「以經驗公式預測台北盆地深開挖引致之地表
    沉陷」,地工技術雜誌,第五十三期,第5-14 頁(1996)。
    [10] 歐章煜、謝百鉤、唐雨耕,「深開挖穩定分析與變形分析」,地工
    技術雜誌,第七十六期,第25-38 頁(1999)。
    [11] 陳厚銘,「自承式雙排鋼版樁工法擋土開挖行為探討」,地工技術
    雜誌,第七十五期,第41-48 頁(1999)。
    [12] 王建智、林宏達、吳明峰,「黏土層深開挖引致之地表沉陷」,地
    工技術雜誌,第七十六期,第51-62 頁(1999)。
    [13] 謝百鉤,「黏土層深開挖引致地盤最大位移預測」,中國土木水利
    工程學刊,第十三卷,第三期,第489-498 頁(2001)。
    [14] 謝旭昇、石強、林婷媚,「淺論雙排樁無支撐工法」,地工技術雜
    誌,第九十七期,第5-14 頁(2003)。
    [15] 魏雨辰、林貽謙、黃文璽、江國輝、李崇正,「砂土層自承式雙
    排鋼軌樁開挖時之反應」,第十二屆大地工程學術討論會,溪頭,
    第B1-03-01-B1-03-09 頁(2007)。
    [16] 歐章煜,深開挖工程分析設計與實務,科技圖書,台北(2002)。
    [17] Acutronic, Geotechnical Centrifuge Model 665-1 Product
    Description 5933H, France (1993).
    [18] Bolton, M. D., and Powrie, W., “The collapse of diaphragm walls
    retaining clay,” Geotechnique, Vol. 37, No. 3, pp. 335-353 (1987).
    [19] Briaud, J. L., Nicholson, P., and Lee, J., “Behavior of full-scale
    VERT wall in sand,” Journal of Geotechnical and Geoenvironmental
    Engineering, ASCE, Vol. 126, No. 9, pp. 808-818 (2000).
    [20] Clough, G.W., and O’Rourke T. D., “Construction induced movement
    of insitu walls,” Proceedings Design and performance of earth
    retainingst structures, ASCE, pp. 439-470 (1990).
    [21] Christian M., “Analysis of wall ground movements due to deep
    excavations in soft soil braced on a new worldwide database,” Soil
    and Foundations, Vol. 44, No. 1, pp. 87-98 (2004).
    [22] Frydman, S., and Baker, R., “Modelling the soil nailing-Excavation
    process,” centrifuge 94, Rotterdam, pp. 669-674 (1994).
    [23] Goldberg, D. T., Jaworski, W. E., and Gordan, M. D., “Lateral
    support system and underpinning,” Report FHWA-RD, pp. 75-128
    (1976).
    [24] Georgiadis, M., Anagnostopoulos, C., and Saflekou, S., “Centrifuge
    testing of laterally loaded piles in sand,” Canadian Geotechnical
    Journal, Vol. 29, pp. 208-216 (1992).
    [25] Georgiadis, M., and Anagnostopoulos, C., “Displacement of
    structures adjacent to cantilever sheet pile walls,” Soil and
    Foundations, Vol. 39, No. 2, pp. 99-104 (1999).
    [26] Hashash, Y. M. A., and Whittle, J. A., “Ground movement prediction
    for deep excavations in soft clay,” Journal of Geotechnical
    Engineering, ASCE, Vol. 122, No. 6, pp. 474-486 (1996).
    [27] Ilyas, T., Leung, C. F., and Budi, S. S., “Centrifuge model study of
    laterally loaded pile groups in clay,” Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 274-283
    (2004).
    [28] Kimura, T., Takemura, J., Hiro-oka, A., Okamura, M., and Park, J.,
    “Excavation in soft clay using an in-flight excavator,” Centrifuge 94,
    Rotterdam, pp. 649-654 (1994).
    [29] King, G. j. w., “Analysis of cantilever sheet-pile walls in cohesionless
    soil,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 9,
    pp. 629-635 (1995).
    [30] Khan, M. R. A., Takemura, J., Fukushima, H., and Kusakabe, O.,
    “Behavior of double sheet pile wall cofferdam on sand observed in
    centrifuge tests,” International Journal of Physical Modelling in
    Geotechnics, IJPMG, Vol. 1, No. 4, pp. 1-16 (2001).
    [31] Leung, C. F., Chow, Y. K., and Shen, R. F., “Behavior of pile subject
    to excavation-induced soil movement,” Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp.
    947-954 (2000).
    [32] Liu, J., “Centrifugal modeling of multi-braced and unbraced
    excavation failures,” Physical Modelling in Geotechnics, Canadian,
    pp. 841-845 (2002).
    [33] Leung, C. F., Lim, J. K., Shen, R. F., and Chow, Y. K., “Behavior of
    pile groups subject to excavation-induced soil movement,” Journal
    of Geotechnical and Geoenvironmental Engineering, ASCE,
    Vol. 129, No. 1, pp. 58-65 (2003).
    [34] McNamara, A. M., and Taylor, R. N., “Use of heave reducing piles to
    control ground movements around excavations,” Physical Modelling
    in Geotechnics, Canadian, pp. 847-852 (2002).
    [35] Mokwa, R. L., and Duncan, J. M., “Rotational restraint of pile caps
    during lateral loading,” Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, Vol. 129, No. 9,
    pp. 829-837 (2003).
    [36] Madabhushi, S. P., and Chandrasekaran, V. S., “Rotation of cantilever
    sheet pile walls,” Journal of Geotechnical and Geoenvironmental
    Engineering, ASCE, Vol. 131, No. 2, pp. 202-212 (2005).
    [37] Nahas, A. EL., and Takemura, J., “External stability of vertical
    excavations in soft clay with self-supported DMM walls,” Soil and
    Foundations, Vol. 42, No. 1, pp. 53-69 (2002).
    [38] Nip, D. C. N., and Ng, C. W. W., “Back-analysis of laterally loaded
    bored piles,” Geotechnical Engineering, ICE, Vol. 158, pp. 63-73
    (2005).
    [39] Ou, C. Y., and Lai, C. H., “Finite-element analysis of deep excavation
    in layered sandy and clayey soil deposits,” Canadian Geotechnical
    Journal, Vol. 31, pp. 204-214 (1994).
    [40] Peck, R. B., “Deep Excavation and tunneling in soft ground," Proc.
    7th Int. Conf. On Soil Mech. Found. Eng., State of Art Volume,
    pp. 225-290 (1969).
    [41] Powrie, W., “Limit equilibrium analysis of embedded retaining
    walls,” Geotechnique, Vol. 46, No. 4, pp. 709-723 (1996).
    [42] Poh, T. Y., Goh, A. T. C., and Wong, I. H., “Ground movements
    associated with wall construction : case histories,” Journal of
    Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127,
    No. 12, pp. 1061-1069 (2001).
    [43] Seek, J. W., Kim, O. Y., Chung, C. K., and Kim, M. M., “Evaluation
    of ground and building settlement near braced excavation sites by
    model testing,” Canadian Geotechnical Journal, Vol. 38,
    pp. 1127-1133 (2001).
    [44] Takemura, J., Kondoh, M., Esaki, T., Kouda, M., and Kusakabe, O.,
    “Centrifuge model tests on double propped wall excavation in soft
    clay,” Soil and Foundations, Vol. 39, No. 3, pp. 75-87 (1999).
    [45] Tsai, J. S., Jou, L. D., and Hsieh, H. S., “A full-scale stability
    experiment on a diaphragm wall trench,” Canadian Geotechnical
    Journal, Vol. 37, pp. 379-392 (2000).
    [46] Vermeer, P. A., Punlor, A., and Ruse, N., “Arching effects behind a
    soldier pile wall,” Computer and Geotechnics, Vol. 28, No. 6,
    pp. 379-396 (2001).
    [47] Zhang, S. D., and Zhang, H. D., “Stability of deep excavations in soft
    clay,” Centrifuge 94, Rotterdam, pp. 643-648 (1994).
    [48] Das, B.M. (1998). Principles of Foundation Engineering, 4th ed.,
    PWS Publishing.

    QR CODE
    :::