| 研究生: |
何國禎 Guo-Zhen He |
|---|---|
| 論文名稱: |
適用於具有未知擾動之線性系統的最佳線性二次觀測器與追蹤器設計 Optimal Linear Quadratic Estimator and Tracker Designs for Linear Systems with Unknown Disturbances |
| 指導教授: |
莊堯棠
Yau-Tarng Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 線性二次類比追蹤器 、線性二次數位追蹤器 、非極小相位系統 、干擾估測器 |
| 外文關鍵詞: | Linear quadratic analog tracker, Linear quadratic digital tracker, non-minimum phase system, disturbance estimator |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對具有未知擾動之線性系統,基於觀測器所建構之改良型強健伺服控制設計在本論文中被提出。首先,針對具有未知擾動之線性連續時域極小相位系統,其整合狀態估測器與未知輸入干擾估測器之誤差動態系統的特徵值,被以最佳化的方式移置在具有特定相對穩定度之s-平面的某線左側。類似的優點亦被應用於伺服機制設計,因此,文獻上受限於必須是低頻的未知干擾才得以被估測暨必須是變化緩慢的時變指令輸入訊號才得以達到伺服機制控制等限制,得以被放寬至估測更為廣泛的高頻未知干擾與追蹤劇烈變化的指令輸入訊號。對照於上述之優點,連續時域版本的設計方式同時被推廣至針對具有極小相位或非極小相位之離散時域版本的設計。特別是,針對具有未知干擾之離散系統,一種基於當下輸出資訊所建構的新型狀態估測器/未知輸入干擾估測器在本論文中被提出。此外,基於等效輸入干擾準則,所提方法亦可適用於非匹配輸入干擾。
Improved robust observer-based servo designs are proposed in this thesis for the linear systems subject to unknown disturbances. First, the poles of the error dynamic system of the state observer integrated with the unknown input estimator for the continuous-time minimum phase system subject to unknown input disturbance (UID) are optimally assigned to lie to the left of some vertical line in the s-plane with prescribed degree of relative stability. Similar merit has been also applied to the servo design. Consequently, restrictions on the estimation of UID with low frequencies and servo control for slow time-varying command inputs presented in literature have been released to the cases for the UID with high frequencies and drastic time-varying command inputs, so that a more wide range unknown input estimations and servo designs can be achieved. In contrast with the above-mentioned merits, the proposed approach for the continuous-time systems has been also extended to the discrete-time version for the minimum phase and/or non-minimum phase systems. Especially, the new current-output observer/UID esitmator-based servo design for the discrete-time system with an unknown disturbance is proposed. Furthermore, based on the equivalent input disturbance (EID) principle, the proposed approaches are applicable to the class of mismatched input disturbances.
[1] Anderson, B. D. O. and Moore, J. B., Optimal Control: Linear Quadratic Methods, Prentice-Hall, New Jersey, 1989.
[2] Anderson, B. D. O. and Moore, J. B., Linear Optimal Control. Englewood Cliffs: Prentice-Hall, 1971.
[3] Chen, M. S. and Chen, C. C. “Unknown input observer for linear non-minimum phase systems,” Journal of The Franklin Institute, vol. 347, pp. 577-588, 2010.
[4] Chang, J. L. “Applying discrete-time proportional integral observers for state and disturbance estimations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp, 814-818, May 2006.
[5] Ebrahimzadeh, F., Tsai, J. S. H., Chung, M. C., Liao, Y. T., Guo, S. M., Shieh, L. S., and Wang, L. A generalized optimal linear quadratic tracker with universal applications-part 1: Continuous-time systems. International Journal of Systems Science. Published online doi:10.1080/00207721.2016.1186239 2016.
[6] Ebrahimzadeh, F., Tsai, J. S. H., Chung, M. C., Liao, Y. T., Guo, S. M., Shieh, L. S., and Wang, L. A generalized optimal linear quadratic tracker with universal applications-part 2: Discrete-time systems. International Journal of Systems Science. Published online doi:10.1080/00207721.2016.1186240 2016.
[7] Gao, Z., Breikin, T., and Wang, H., “Discrete-time proportional-integral observer and observer-based controller for systems with unknown disturbances,” European Control Conference, 2007.
[8] Hunt, L. R., Mayer, G., and Su, R. “Noncausal inverses for linear systems,” IEEE Transactions on Automatic Control, vol. 41, no. 4, pp. 608-611, Apr. 1996.
[9] Ogata, K. Discrete-time Control Systems. NJ: Prentice-Hall, Englewood Cliffs, 1987.
[10] Radke, A. and Gao, Z. “A survey of state and disturbance observers for practitioners,” Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16, 2006.
[11] She, J. H., Fang, M., Ohyama, Y., Hashimoto, H., and Wu, M. “Improving Disturbance-Rejection Performance Based on an Equivalent-Input-Disturbance Approach,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, January 2008
[12] Shieh, L. S., Dib, H. M., and Ganesan, S., “Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region,” IEE Proceedings Part D, vol. 134, pp. 338-346, 1987.
[13] Skogestad, S., and Postlethwaite, I. Multivariable Feedback Control: Analysis and Design. NY: John Wiley and Sons, Inc., 2005.
[14] Tang, D., Chen, L., and Hu, E. “A novel unknown-input estimator for disturbance estimation and compensation” Proceedings of Australasian Conference on Robotics and Automation, The University of Melbourne, Melbourne, Australia. Dec 2-4, 2014.
[15] Termehchy, A. and Afshar, A. “A novel design of unknown input observer for fault diagnosis in non-minimum phase systems,” The International Federation of Automatic Control, Cape Town, South Africa, August 24-29, 2014.
[16] Ting, H. C., Chang, J. I., and Chen, Y. P. “Proportional-derivative unknown input observer design using descriptor system approach for non-minimum phase systems,” International Journal of Control, Automation, and Systems, vol. 9 no. 5, pp. 850-856, 2011.
[17] Wang, L. P., Model Predictive Control System Design and Implementation using MATLAB, Springer, 2009.