| 研究生: |
林坤緯 Kun-wei Lin |
|---|---|
| 論文名稱: |
使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證 Optimal design and experimental verification of a method for reducing geometrical fluctuations of laser by diffuser |
| 指導教授: |
何正榮
劉建聖 Chien-Sheng Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 雷射 、光束強度 、幾何擾動 、光強度擾動 |
| 外文關鍵詞: | Geometrical fluctuations |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究一種降低雷射光源幾何擾動的方法,由於雷射光源本身並非穩定的,因此在本論文中主要是將一轉動之擴散片加入系統中,使雷射光源通過後降低由於雷射之不穩定所產生的誤差。研究方法主要是利用ASAP光學軟體來模擬當光通過轉動之擴散片後產生的現象並根據成像光形來計算其重心位置,藉著重心位置變化量來判斷光源擾動程度,最後再搭配實驗驗證。
本論文系統架構茲說明如下:雷射光源通過一擴散片後,在其內部產生好幾次折射與反射並且透過轉動來使光強度均化,接著通過兩透鏡準直並聚焦,再通過兩濾光片來降低其光強度,最後藉由反射鏡將光源送至CCD上成像。由CCD所成像之光強度分佈來計算其重心位置,並根據此重心位置變化量來判斷光源擾動程度。通過實驗來得知光源所產生之重心位置變化量,並使用此結果來設定模擬的擾動量,最後模擬不同參數來分析其重心位置變化量與光強度分佈,根據其結果找出最佳化之參數,且搭配實驗來驗證模擬結果。
而根據模擬與實驗結果顯示,在系統中加入擴散片後相較於未加入時,其重心位置變化量有明顯降低,代表此法對於抑制光源擾動是有效的。
In this thesis we present a preliminary study and experimental results on the use of a system reducing the geometrical fluctuations of a laser, in which the effects of geometrical fluctuations of the laser beam are minimized by means of a high-speed rotating diffuser. A numerical model was implemented by using the ASAP ray tracing software to simulate the process when laser light passed through the rotating diffuser and an intensity distribution of the laser spot was recorded. Then the centroid calculated by the resultant intensity of the laser spot at different time is considered to be the extent of fluctuations. Finally, we simulated different parameters to analyze the variation of centroid and the intensity distribution of the laser spot, and find the optimal parameters.
The validity of the proposed system was verified by constructing a laboratory-built prototype. In this structure of the prototype, the light beam passed through a high-speed rotating diffuser and then the light beam was collimated and focused by means of two convex lenses and was incident on a CCD camera. According to the intensity distribution of the laser spot without diffuser, the centroid of the laser spot was calculated and then the geometrical fluctuations of the laser could be obtained at different time. The simulation and experimental results show that compared to the conventional system without diffuser, the variation of centroid with present system is much lower. It represents that the proposed method is effective for suppressing geometrical fluctuations of the laser beam.
參考文獻
[1] C. S. Liu, K. W. Lin, and S. H. Jiang, “Development of precise autofocusing microscope based on reduction of geometrical fluctuations,” Proceedings of SICE Annual Conference 2012, pp. 967-972, 2012. (Akita, Japan, August 20-23, 2012).
[2] J. A. Armstrong and A. W. SMITH, “Intensity fluctuations in GaAs laser emission,” Phys. rev., vol. 40, pp.155-164 , 1965.
[3] E. Jakeman, C. J. Oliver, E. R. Pike, M. Lax, and M. Zwanziger, “The intensity fluctuation distribution of laser light,” J. Phys. A: Gen. Phys., vol. 3, pp. 52-55, 1970.
[4] K. A. Janulewicz, C. M. Kim, and H. Stiel, “Speckle statistics and transverse coherence of an x-ray laser with fluctuations in its active medium,” Opt. Express., vol. 21, pp. 3225-3234, 2013.
[5] I. Takeshi, S. Machida, K. Nawata, and T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode ALGaAs Laser,” IEEE J. Quantum Electron., vol. 13, pp. 574-579, 1977.
[6] A. Rüdigera, R. Schillinga, L. Schnuppa, W. Winklera, H. Billinga, and K. Maischbergera, “ A mode selector to suppress fluctuations in laser beam geometry,” J. Mod. Opt., vol. 28, pp. 641-658, 1981.
[7] M. Tamir, U. Halavee and, E. Azoulay, “ Power fluctuations caused by laser beam wandering and shift,” Appl. Optics., vol. 20, pp. 734-735, 1981.
[8] S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity., vol. 3, pp. 4-31, 2005.
[9] J. M. Alonso, B. Monacelli, J. Alda, and G. D. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng., vol. 44, no. 5, pp. 054203-1- 054203-10, 2005.
[10] C. C. Kuo and C. S. Chao, “Characterization of probe lasers for precision thin films optical inspection system,” J. Russ. Laser Res., vol. 31, pp. 22-31, 2010.
[11] D. W. Smith, “Reducing phase fluctuations in a coherent radiation beam using feedforward control,” U.S. Patent 4847477, 1989.
[12] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0 229 825 B1, 1986.
[13] H. Mizoguchi, Y. Amada, and N. Ito, “Laser device,” U.S. Patent 5535233, 1996.
[14] M. J. W. Rodwell, K. J. Weingarten, and D. M. Bloom, “Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback,” Opt. Lett., vol. 11, pp. 638-640, 1986.
[15] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[16] I. A. Andronova and I. L. Bershtein, “Suppression of fluctuations of the intensity of radiation emitted by semiconductor lasers,” Sov. J. Quantum Electron., vol. 21, pp. 616-618, 1991.
[17] V. V. Vorobev, “Reduction of fluctuations of the laser beam intensity by defocusing with an extended lens,” Sov. J. Quantum Electron., vol. 11, pp. 405-406, 1981.
[18] S. E. Miller, “On single-mode injection laser structures for reduced output fluctuations,” IEEE J. Quantum Electron., vol. 21, pp. 1644-1658, 1985.
[19] S. Matsuo, L. Yan, J. Si, T. Tomita, and S. Hashimoto, “Reduction of pulse-to-pulse fluctuation in laser pulse energy using the optical Kerr effect,” Opt. Lett., vol. 37, pp. 1646-1648, 2012.
[20] H. M. Wiseman and G. J. Milburn, “Reduction in laser-intensity fluctuations by a feedback-controlled output mirror,” Phys. Rev. A., vol. 46, pp. 2853-2858, 1992.
[21] W. R. Bennett and V. P. Chebotayev, “Laser with reduced intensity fluctuations,” U.S. Patent 5251229, 1993.
[22] R. V. Leeuwen and T. Oh, “Stabilized laser using multiphoton absorption to reduce intensity fluctuations,” U.S. Patent 6788715, 2004.
[23] C. S. Liu and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Meas. Sci. Technol., vol. 24, pp. 105101-105108, 2013.
[24] E. Calloni, J. T. Baker, F. Barone, R. DeRosa, L. Di Fiore, L. Milano, and S. R. Restaino, “Adaptive optics approach for prefiltering of geometrical fluctuations of the input laser beam of an interferometric gravitational waves detector,” Rev. Sci. Instrum., vol. 74, pp. 2570-2574, 2003.
[25] K. H. Kim, S. Y. Lee, S. Kim, S. G. Jeong, ”DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, pp. 687-691, 2008.
[26] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the Moiré method,” Measurement, vol. 44, pp. 1793-1800, 2011.
[27] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0 229 825 B1, 1986.
[28] K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol., vol. 28, pp. 2730-2735, 2010.
[29] M. He, W. Zhang, and X. Zhang, “A displacement sensor of dual-light based on FPGA,” Optoelectron.Lett., vol. 3, pp. 294-298, 2007.
[30] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[31] X. Meng and L. Zeng, “Reducing the effect of laser beam fluctuations in a wind tunnel experiment by using an orthogonal-polarization compensation method,” Dept. of Precision Instrum., vol. 2, pp. 276-277, 2001.
[32] S. Gossler, M. M. Casey, A. Freise, A. Grant, and H. Grote, “Mode-cleaning and injection optics of the gravitational-wave detector GEO600,” Rev.Sci. Instrum., vol. 74, pp. 3787-3795, 2003.
[33] S. Avino, F. Barone, J. T. Baker, E. Calloni, R. DiRosa, L. DiFiore, L. Milano, and S. R. Restaino, “Adaptive Optics correction of geometrical fluctuations of Virgo input laser beam: preliminary results,” Proc. SPIE., vol. 4493, pp. 156-165, 2002.
[34] N. Descharmes and F. P. Shevlin, “Optical system and method,” U.S. Patent 20110102748, 2011.
[35] B. D. Silverstein and G. E. Nothhard, “Uniform speckle reduced laser projection using spatial and temporal mixing,” U.S. Patent 7959297, 2011.
[36] J. M. Florence, “Speckle-free display system using coherent light,” U.S. Patent 5313479, 1994.
[37] A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE., vol. 6911, pp. 69110-1-69110-7, 2008.
[38] W. Haa, S. Leea, Y. Jungb, J. Kimb, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE., vol. 6873, pp. 68731-1-68731-8, 2008.
[39] S. Lowenthal and D. Joyeux, “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser,” J. Opt. Soc. Am., vol. 61, pp. 847-851, 1971.
[40] Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol. 27, pp. 1812-1817, 2010.
[41] K. Curtis, D. A. Coleman, and G. D. Sharp, “Speckle reduction using screen vibration techniques and apparatus,” U.S. Patent 20130010356, 2013.
[42] J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE., vol. 4657, pp. 131-1-131-7, 2002.
[43] B. D. Maxson, “Systems and methods for despeckling a laser light source,” U.S. Patent 20100053476, 2010.
[44] Z. Liao, T. Xing, G. Cheng, and W. Lin, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE, vol. 6622, pp. 662229-1-662229-9, 2008.
[45] S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Zhaomin Tong, U. Österberg, and A. Aksnes, “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng., vol. 50, pp. 083202-1-083202-8, 2011.
[46] J. Domm, “Decohered laser light production system,” U.S. Patent 20090168025, 2009.
[47] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett., vol. 29, pp. 11-13, 2004.
[48] J. Knittel, “Beam shaper for an optical storage system,” U.S. Patent 8351316, 2013.
[49] E. M. H. P. V. Dijk, S. Stallinga, D. Leo J. Vossen, and M. I. Boamfa, “Beam shaping without introducing divergence within a light beam,” U.S. Patent 8421000, 2013.
[50] D. Michaelis, C. Wachter, N. Danz, S. Kudaev, and M. Flaemmich, “Beam shaper,” U.S. Patent 8469549, 2013.
[51] T. Rupp, J. Braun, D. Vees, J. M. Weick, and D. Burger, “Beam Shaping Unit For Focusing a Laser Beam,” U.S. Patent 20130044371, 2013.
[52] F. M. Dickey, L. S. Weichrnan, and R. N. Shagam, “Laser beam shaping techniques,” Proc. SPIE, vol. 4065, pp. 338-350 , 2000.
[53] R. Pereira, B. Weichelt, D. Liang, P. J. Morais, H. Gouveia, M. A. Ahmed, A. Voss, and T. Graf, “Efficient pump beam shaping for high-power thin-disk laser systems,” Appl. Opt., vol. 49, pp. 5157-5162, 2010.
[54] K. H. Hsu and H. Y. Lin, “Effects of the spatial frequency composition of the target pattern and the number of quantization levels in diffractive beam shaper design,” Appl. Opt., vol. 51, pp. 3313-3322, 2012.
[55] H. D. Doan, Y. Akamine, and K. Fushinobu, “Fluidic laser beam shaper by using thermal lens effect,” Int. J. Heat Mass Transf., vol. 55, pp. 2807-2812, 2012.
[56] X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt., vol. 25, pp. 377-381, 1986.
[57] C. Liu, F. Zhang, C. Wang, Y. Lu, R. Geng, and S. Jian, “Silica-Taper Array for Beam Shaping of High Power Laser Diode Bar,” Opt. Rev., vol. 19, pp. 150-153, 2012.
[58] P. J. Smilie and T. J. Suleski, “Variable-diameter refractive beam shaping with freeform optical surfaces,” Opt. Lett., vol. 36, pp. 4170-4172, 2011.
[59] X. H. Lee, Y. Y. Chang, and C. C. Sun, “Highly energy-efficient agricultural lighting by B+R LEDs with beam shaping using micro-lens diffuser,” Opt. Commun, vol. 291, pp. 7-14, 2013.
[60] C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt., vol. 18, pp. 050902-1-050902-12, 2013.
[61] F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B., vol. 40, pp. 2383-2406, 1989.
[62] S. F. Chen, C. C. Sun, and C. S. Wu, “Design for a high dense wavelength division multiplexer based on volume holographic gratings,” Opt. Eng., vol. 43, pp. 2028-2033, 2004.
[63] H. C. Hulst, “Light scattering by small particles,” Dover Pubns, 1981.
[64] A. Horibe, M. Izhuara, E. Nihei, and Y. Koike, “Brighter backlights using highly scattered optical-transmission polymer,” J. Soc. Inf. Disp., vol. 3, pp. 169-171, 1995.
[65] A. Tagaya, M. Nagai, Y. Koike, and K. Yokoyama, “Thin liquid-crystal display backlight system with highly scattering optical transmission polymers,” Appl. Optics., vol. 40, pp. 6274-6280, 2001.
[66] J. C. Stover, “Optical scattering: measurement and analysis,” Society of Photo-Optical, 1995.
[67] J. M. Bennett, “Introduction to Surface Roughness and Scattering,” Optical Society of America, 1999.
[68] P. Beckmann and A. Spizzichino, “The scattering of electromagnetic waves from rough surfaces,” Artech House, 1987
[69] J. E. Harvey, “Light-scattering characteristics of optical surfaces,” Proc. SPIE, vol. 107, pp. 41-47, 1977.
[70] P. S. Heckbert, “Simulating global illumination using adaptive meshing,” University of California, PhD thesis, 1991.
[71] V. N. Mahajan, “Optical Imaging and Aberrations: Part I. Ray Geometrical Optics,” SPIE PRESS, 1998.
[72] R. W. Boyd, “Radiometry and the detection of optical radiation,” Wiley, 1983.
[73] C. S. Liu, and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Meas. Sci. Technol., 2013.
[74] http://www.edmundoptics.com/
[75] http://www.thorlabs.com/
[76] G. M. Morris, S. Chakmakjian, and D. J. Schertler, “Engineered diffusers™ for display and illumination systems: Design, fabrication, and applications,” RPC Photonics, Inc., 2006.
[77] http://www.suss-microoptics.com/media/downloads/Instruction%20manual%20for%20Rotating%20diffuser%20system.pdf