跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝禮存
Li-Tsun Hsieh
論文名稱: H_infinity 取樣模糊系統的觀測型控制
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 取樣系統觀測型回饋控制線性矩陣不等式(T-S) 模糊模型
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分成三個部分來說明:第一部分講述系統及即時觀測器的數學模型,針對模糊理論可以處理非線性系統,
    將原始系統精確的轉換為 Takagi-Sugeno (T-S) 模糊模型,之後又將 (T-S)模糊系統模型轉換成含有跳躍的模糊系統架構;
    第二部分根據第一部分得到的含有跳躍的模糊系統架構和即時觀測器模型,分別推導出使系統穩定和滿足 H_infinity 性能指標的條件;
    第三部分則對推導出的結果作電腦模擬,設計即時觀測器。


    論文摘要.............I 誌謝.................II 圖目.................VII 第一章 簡介..........1 1.1 文獻回顧.........1 1.2 研究動機.........2 1.3 論文結構.........3 1.4 符號標記.........3 1.5 預備定理.........4 1.5.1 預備定理1(蕭式轉換)...4 1.5.2 預備定理2(全等轉換)...4 第二章 無干擾系統架構與數學模型...5 2.1 系統的數學模型...5 2.2 數位控制器數學模型...6 2.3 跳躍的取樣模糊系統...7 第三章 即時觀測器和穩定條件...9 3.1 即時觀測器數學模型...9 3.2 即時觀測器...........9 3.3 閉迴路系統...........11 3.4 穩定條件.............12 第四章 非線性系統電腦模擬...19 4.1 非線性系統數學架構...19 4.2 求解.................20 第五章 含有干擾的系統架構與數學模型...27 5.1 系統的數學模型.......27 5.2 數位控制器數學模型...28 5.3 跳躍的取樣模糊系統...29 第六章 即時觀測器和穩定條件...........31 6.1 即時觀測器數學模型...31 6.2 即時觀測器...........31 6.3 閉迴路系統...........32 6.4 H_infinity 性能指標.34 6.5 滿足 H_infinity 性能指標之充分條件...35 第七章 電腦模擬..........46 7.1 蔡式電路系統例子.....46 7.1.1 數學架構...........46 7.1.2 求解...............48 7.2 倒單擺系統例子.......62 7.2.1 數學架構...........62 7.2.2 求解...............64 第八章 結論與未來方向....74 8.1 總結.................74 8.2 未來研究方向.........75 參考文獻.................76

    [1] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,”
    Fuzzy Set and Systems, vol. 45, pp. 135–156, 1992.
    [2] K. Tanaka and M. Sano, “Fuzzy stability criterion of a class of nonlinear systems,”
    vol. 71, no. 1,2, pp. 3–26, 1993.
    [3] S. K. et al, “An approach to stability analysis of second order fuzzy systems,” in
    Proc. FUZZ-IEEE’92, pp. 1427–1434.
    [4] H.Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensation of nonlinear
    systems by Takagi-Sugeno fuzzy model,” in Proc. of FUZZ-IEEE, Yokohama,
    Japan, 1995, pp. 531–538.
    [5] ——, “An analytical framework of fuzzy modeling and control of nonlinear systems:
    stability and design issues,” in Proc. 1995 American control conference,
    Seattle,American, 1995, pp. 2272–2276.
    [6] ——, “An approach to fuzzy control of nonlinear systems: stability and design
    issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14–23, Feb. 1996.
    [7] K. Tanaka, T. Taniguchi, and H. Wang, “Model-based fuzzy control of TORA
    systems,” in Proc. of 7th IEEE Conf. on Fuzzy Systems, 1998, pp. 313–318.
    [8] K. Tanaka, T. Ikeda, and H. Wang, “Design of Fuzzy control systems based on
    relaxed LMI stability conditions,” vol. 1, pp. 598–603, 1996.
    [9] ——, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMIbased
    designs,” IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250–265, May 1998.
    [10] H. Kang, C. Kwon, Y. Yee, and M. Park, “L2 robust stability analysis for the
    fuzzy feedback linearization regulator,” in Proc. of the 6th IEEE Int’l Conf. on
    Fuzzy Systems, vol. 1, 1997, pp. 277–280
    [11] H. Kang, C. Kwon, H. Lee, and M. Park, “Robust stability analysis and design
    method for the fuzzy feedback linearization regulator,” IEEE Trans. Fuzzy Syst.,
    vol. 6, no. 4, pp. 464–472, Nov. 1998.
    [12] K. Kiriakidis, A. Grivas, and A. Tzes, “Quadratic stability analysis of the Takagi-
    Sugeno fuzzy model,” Fuzzy Set and Systems, vol. 98, pp. 1–14, 1998.
    [13] M. Teixeira and S. Zak, “Stabilizing controller design for uncertain nonlinear systems
    using fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 133–142,
    Apr. 1999.
    [14] S. Cao, N. Rees, and G. Feng, “Quadratic stability analysis and design of continuous
    fuzzy control systems,” Int’l. Journal on Systems Science, vol. 27, no. 2, pp.
    193–203, 1996.
    [15] ——, “Analysis and design of fuzzy control systems using dynamic fuzzy-state
    space models,” IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 192–200, 1999.
    [16] K. Tanaka, T. Ikeda, and H. Wang, “Robust stabilization of a class of uncertain
    nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory,
    and linear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1–13,
    Feb. 1996.
    [17] K. Tanaka, T. Hori, and H. Wang, “New robust and optimal designs for Takagi-
    Sugeno fuzzy control systems,” in Proc. of 1999 IEEE Int’l Conf. on Control Appl.,
    Kohala Coast, Hawaii, 1999, pp. 415–420.
    [18] S. Cao, N. Rees, and G. Feng, “H∞ control of uncertain fuzzy continuous-time
    systems,” Fuzzy Set and Systems, vol. 115, pp. 171–190, 2000.
    [19] Z. Han and G. Feng, “State feedback H∞ controller design of fuzzy dynamic systems
    using LMI techniques,” in Proc. of IEEE World Congress on Computational
    Intelligence, vol. 1, Anchorage, AK., May 1998, pp. 538–544.
    [20] Z. Han, G. Feng, and N. Zhang, “Dynamic output feedback H∞ controller design
    of fuzzy dynamic systems using LMI techniques,” in Proc. of Second International
    Conference on Knowledge-Based Intelligent Electronic Systems, vol. 2, Adelaide,
    AU, 1998, pp. 343–352
    [21] A. Jadbabaie, M. Jamshidi, and A. Titli, “Guaranteed-cost design of continuoustime
    Takagi-Sugeno fuzzy controller via linear matrix inequalities,” in Proc. of
    IEEE World Congress on Computational Intell., vol. 1, Anchorage, AK., May
    1998, pp. 268–273.
    [22] S. Hong and R. Langari, “Synthesis of an LMI-based fuzzy control system with
    guaranteed optimal H∞ performance,” in Proc. of IEEE World Congress on Computational
    Intell., vol. 1, Anchorage, AK., May 1998, pp. 422–427.
    [23] B. Chen, C. Tseng, and H. Uang, “Mixed H2/H∞ fuzzy output feedback control
    design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy
    Syst., vol. 8, no. 3, pp. 249–265, June 2000.
    [24] P. Khargonekar and N. Sivashankar, “H2 optimal control for sampled-data systems,”
    Syst. & Contr. Lett., vol. 17, pp. 425–436, 1991.
    [25] B. Bamieh and J. Pearson, “The H2 problem for sampled-data systems,” Syst. &
    Contr. Lett., no. 19, pp. 1–12, 1992.
    [26] R. Ravi, K. Nagpal, and P. Khargonekar, “H∞ of linear time-varying systems:
    A state-space approach,” SIAM J. Control and Optimization, vol. 29, no. 6, pp.
    1394–1413, Nov. 1991.
    [27] D. Limebeer, B. Anderson, R. Khargonekar, and M. Green, “A game theoretic
    approach to H∞ for time-varying systems,” SIAM J. Control and Optimization,
    vol. 30, no. 2, pp. 262–283, Mar. 1992.
    [28] N. Sivashankar and P. Khargonekar, “Robust stability and performance analysis of
    sampled-data systems,” IEEE Trans. Automat. Contr., vol. 38, no. 1, pp. 58–1150,
    Jan. 1993.
    [29] ——, “Characterization of the L2-induced norm for linear systems with jumps
    with applications to sampled-data systems,” SIAM J. Control and Optimization,
    vol. 32, no. 4, pp. 1128–1150, July 1994.
    [30] H. Toivonen andM. Sagfors, “The sampled-data H∞ problem: a unified framework
    for discretization-based method and Riccati equation solution,” Int. J. Contr.,
    vol. 66, no. 2, pp. 289–309, 1997.
    [31] W. Sun, K. Nagpal, and P. Khargonekar, “H∞ control and filtering for sampleddata
    systems,” IEEE Trans. Automat. Contr., vol. 38, no. 8, pp. 1162–1175, 1993.
    [32] A. Ichikawa and H. Katayama, “H∞ control for a general jump systems with
    application to sampled-data systems,” Kobe, JP, pp. 446–451, 1996.
    [33] ——, “H2 and H∞ control for jump systems with application to sampled-data
    systems,” Int’l J. of Systems Science, vol. 29, no. 8, pp. 829–849, 1998.
    [34] S. Nguang and P. Shi, “On designing filters for uncertain sampled-data nonlinear
    systems,” Syst. & Contr. Lett., vol. 41, pp. 305–316, 2000.
    [35] Y. Joo, L. Shieh, and G. Chen, “Hybrid state-space fuzzy model-based controller
    with dual-rate sampling for digital control of chaotic systems,” IEEE Trans. Fuzzy
    Syst., vol. 7, no. 4, pp. 394–408, Aug. 1999.
    [36] W. Chang, J. Park, Y. Joo, , and G. Chen, “Design of sampled-data fuzzy-modelbased
    control systems by using intelligent digital redesign,” IEEE Trans. Circuits
    and Syst. I: Fundamental Theory and Applications, vol. 49, no. 4, pp. 509–517,
    Apr. 2002.
    [37] L. Hu, H. Shao, and Y. Sun, “Robust sampled-data control for fuzzy uncertain
    systems,” in Proc. of American Conf. Conf., vol. 1, Chicago, IL, 2000, pp. 1934–
    1938.
    [38] M. Nishikawa, H. Katayama, J. Yoneyama, and A. Ichikawa, “Design of output
    feedback controllers for sampled-data fuzzy systems,” Int’l J. of Systems Science,
    vol. 31, no. 4, pp. 439–448, 2000.
    [39] S. Nguang and P. Shi, “Fuzzy H∞ output feedback control of nonlinear systems
    under sampled measurement,” in Proc. of the 40th IEEE Conf. on Deci. and
    Contr., vol. 1, Orlando, FL, 2001, pp. 4370–4375.
    [40] H. Katayama and A. Ichikawa, “H∞ control for sampled-data fuzzy systems,” in
    Proc. of the American Control Conference, Denver, CO, 2003, pp. 4237–4242.
    [41] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
    to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
    116–132, Jan. 1985.
    [42] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule
    reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
    systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 525–538, Aug. 2001.
    [43] J. Lo and M. Lin, “Robust H∞ nonlinear control via fuzzy static output feedback,”
    IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., vol. 50, no. 11, pp.
    1494–1502, Nov. 2003.
    [44] W. Sun, K. Nagpal, P. Khargonekar, and K. Poolla, “Digital control systems: H∞
    controller design with a zero-order hold function,” in Proceedings of the 31st IEEE
    Conf. on Decision & Control., Tucson, AR, 1992, pp. 475–480.
    [45] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality
    Approach. New York, NY: John Wiley & Sons, Inc., 2001.
    [46] R. H. Cannon, Dynamics of Physical Systems”. New York: McGraw-Hill, 1967.
    [47] H.Wang, K. Tanaka, and T. Ikeda, “Fuzzy modeling and control of chaotic systems
    ,” in IEEE Sympo. Circuits Systems, Atlanta, GA, May 1996, pp. 209–212.
    [48] J. C. Lo and L. T. Hsieh, “Observer-based control for sampled-data fuzzy systems,”
    IEEE International Conference on Fuzzy Systems, 2005.

    QR CODE
    :::