跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳贊年
Tsan-nien Chen
論文名稱: 鎖相熱影像檢測法用以檢測材料內部缺陷
Internal defect detection using lock-in thermography
指導教授: 鍾德元
Te-yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 鎖相熱成像缺陷檢測
外文關鍵詞: Lock-in thermography, Heat, Defect, Detect
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文建立一套非接觸式、非破壞性的檢測物體內部缺陷深度與半徑的方法,利用在鎖相熱成像法中在物體輸入周期性變化的熱功率的特性導入熱波原理,藉由熱波原理控制檢測的深度。並根據有限元素分析軟體對不同缺陷深度與半徑進行模擬的結果建立一套使用週期性熱功率量測物體後,可以從量測的結果推算出在物體內部缺陷分布情形,並且同時得知缺陷深度與半徑的方法,最後進行實驗對模擬的結果進行確認。


    This research successfully builds a non-destructive, non-contact detection method of determining the internal defect depth and defect radius in samples. In lock-in thermography method, the samples are measured by periodically changed heat flux. The effect about periodically changed heat flux is known as thermal wave effect. As thermal wave effect shows, the detection depth is related with the frequency of heat flux By finite element analysis software, the defect depth and defect radius we can be measured after using two difference frequency heat power detect a sample. The simulation results are proved by experiment.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 6 1.3研究動機與目的 8 第二章 基本原理 10 2.1 基本熱傳原理 10 2.1.1 熱傳導 10 2.1.2 熱對流 13 2.1.3 熱輻射 14 2.2 熱波現象 15 2.3 鎖相原理 17 2.4 暫態鎖相誤差修正 20 第三章 模擬分析 23 3.1 引言 23 3.2 有限元素分析法 23 3.3 模擬模型建立 25 3.4 模擬結果與誤差分析 31 3.4.1 缺陷寬度與深度分析 31 3.4.2 各種環境條件誤差分析 39 3.4.3 不同材質與幾何結構情況下驗證 47 第四章 實驗驗證與分析 50 4.1 實驗架構 50 4.2 紅外線熱像儀誤差分析 54 4.3 實驗與模型驗證 55 第五章 結論 65 第六章 未來展望 66 參考資料 68 附錄一 LED樣品量測結果 70 附錄二 熱波的干涉現象 73

    [1] L. inside. http://www.ledinside.com.tw/global_f_f_200901
    [2] H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
    [3] N. Holonyak and S. Bevacqua, "Coherent (visible) light emission from Ga (As1− xPx) junctions," Applied Physics Letters, vol. 1, pp. 82-83, 1962.
    [4] J. Allen, M. Moncaster, and J. Starkiewicz, "Electroluminescent devices using carrier injection in gallium phosphide," Solid-State Electronics, vol. 6, pp. 95-102, 1963.
    [5] H. Grimmeiss and H. Scholz, "Efficiency of recombination radiation in GaP," Physics Letters, vol. 8, pp. 233-235, 1964.
    [6] M. Craford, R. W. Shaw, A. Herzog, and W. Groves, "Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping," Journal of Applied Physics, vol. 43, pp. 4075-4083, 1972.
    [7] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Jpn. J. Appl. Phys, vol. 31, pp. L139-L142, 1992.
    [8] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, pp. L797-L799, 1995.
    [9] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, "Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material," ed: Google Patents, 1999.
    [10] 美國能源部. http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=7081
    [11] Cree. http://www.cree.com/led-components-and-modules/products/xlamp/discrete-directional/xlamp-mlb
    [12] X. Maldague, "Theory and practice of infrared technology for nondestructive testing," 2001.
    [13] G. Giorleo and C. Meola, "Comparison between pulsed and modulated thermography in glass–epoxy laminates," NDT & E International, vol. 35, pp. 287-292, 2002.
    [14] S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, and F. Altmann, "Lock-in IR-thermography-A novel tool for material and device characterization," in DIFFUSION AND DEFECT DATA PART B SOLID STATE PHENOMENA, 2002, pp. 741-746.
    [15] X. Maldague and S. Marinetti, "Pulse phase infrared thermography," Journal of Applied Physics, vol. 79, pp. 2694-2698, 1996.
    [16] J. P. Holman, Heat transfer: McGraw-Hill, 1989.
    [17] G. Busse, D. Wu, and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," Journal of Applied Physics, vol. 71, pp. 3962-3965, 1992.
    [18] O. Breitenstein and M. Langenkamp, Lock-In Thermography: Basics and Use for Functional Diagnostics of Electronic Components: Springer Verlag, 2003.
    [19] G. Giorleo and C. Meola, "Location and geometry of defects in composite laminates from infrared images," Journal of materials engineering and performance, vol. 7, pp. 367-374, 1998.
    [20] 陳憬憲, 穩態紅外線 LED 封裝熱阻量測,國立中央大學光電所碩士論文, 2010.
    [21] J. Shen and A. Mandelis, "Thermal‐wave resonator cavity," Review of scientific instruments, vol. 66, pp. 4999-5005, 1995.

    QR CODE
    :::