跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周芳嬪
Fang-ping Chou
論文名稱: 高速 850-nm 矽光檢測器設計與分析
Design and Analysis of 850 nm Si Photodiodes in Standard CMOS Technology
指導教授: 辛裕明
Yue-ming Hsin
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 91
中文關鍵詞: 光檢測器標準製程
外文關鍵詞: 850 nm
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文所討論的光通訊元件為利用較便宜的矽(Silicon)材料並結合商用標準
    CMOS 製程製作的矽光檢測器(Si photodetector),利用此方式製作的元件俱有大幅降
    低成本及容易與後端電路整合製成光電積體電路(OEIC)的特性。
    使用 商用 CMOS 製程來實現 850-nm 光檢測器最關鍵的問題其一便是速度,由於
    商用 CMOS 製程屬於平坦化且表面的製程,實際可應用的 n/p 層(layer)最深也只在 2
    ~ 3 µm 之間。對入射光波長為 850 nm 的光訊號而言,矽材料的吸收深度(absorption
    depth)約為 20-µm,此意味著大部分的光會落在表面元件之外的基板中,無法直接被
    表層形成的元件空乏區內之電場收集到。這些在基板中吸光而產生的電子電洞對,會
    先以擴散運動方式慢速的到達空乏區而被電極收集,因而大幅地影響了光檢測器的操
    作速度。加上標準 CMOS 製程無法更動製程條件,元件的設計與特性改善只能利用
    現有層數和佈局來改善。研究上首先利用基本 pn 二極體結構的光檢測器(PD)來比較
    三種不同形狀佈局光檢測器的表現,包括傳統長條型、環繞式四邊形、與環繞式八邊
    型,量測結果顯示,環繞式八邊型的結構有對稱電場分佈能達到較佳的頻寬、響應度
    表現,因此本論文的後續正面照光光檢測器都採用八邊型的佈局。
    為了改善光檢測器的速度特性,提出了三種方法來達到高速的目標。第一種方法
    是利用 pwell 包圍在元件最外圍形成一圈 body 的結構,接下來給予 body 電極適當的
    偏壓,讓其與光檢測器內部接地的 p 端形成電流路徑。當基板因照光產生慢速載子而
    往元件主動區移動時,慢速載子會被此電流路徑帶走而不影響元件本身,進而提高元
    件的頻寬。並且透過適當的 body 偏壓與 PD 元件偏壓配合,能讓元件操作在低偏壓
    3-V 達到頻寬 2.46GHz,符合實際的低壓操作運用。第二個方法是利用側面照光的方
    式,將光藉由側面照射至元件表面,避免入射光照射到基板,減少基板產生慢速載子
    的困擾。但標準製程實現測照 PD 的困難在於如何定義受光面,本論文利用 CIC 提供
    的後製程(MEMS)蝕刻出受光面,再用切割的方式露出受光面以利光纖照光。基本 pn
    結構為長條型,光檢測器頻寬由正面入射照的 1.4 GHz 提升至側面入射照的 2.6GHz。
    第三種方法是利用 0.18 µm CMOS 製程裡的較深層 deep n-well 來阻擋基板的慢速載
    子,若要確實達到阻隔慢速載子必須要在 deep n-well 增加額外的電極來將電子帶走
    加上,並利用基板接地帶走慢速電洞共同達成。此方法的光檢測器頻寬可大幅提升至
    8.7 GHz,為目前文獻上利用商用 CMOS 製程實現的最快速 850-nm 矽光檢測器。除了利用頻寬來確認基板慢速載子的排除效果,另外也藉由多餘噪音雜訊(excess noise)
    的量測結果來佐證,比較三種研究方法的元件之多餘噪音雜訊量測結果,矽光檢測器
    具有 deep n-well 另給偏壓的方式可以得到最低雜訊指數(noise factor) 5.3。


    This dissertation proposes the photodetectors using cheaper silicon material combined
    with standard CMOS technology without any process modifications. To enable the
    cost-effective implementation of the optical short-distance interconnection, Si CMOS
    technologies is a good, low-cost approach for general 850 nm transmitter and provide a
    universal platform for the monolithic integration of available, complex, and high-speed
    circuits with Si photodetectors to form an all-Si optical receiver (OEIC).
    One of the most crucial issues for 850 nm Si photodiodes in standard CMOS technology
    is the response speed. Because the penetration depth (∼ 20 μm) of the 850 nm-wavelength
    light into Si is much deeper than that of the depth of the depletion (∼ 2 μm) in the surface
    p-n diodes. As a result, a large portion of carriers is generated in the Si substrate and
    diffuse in all directions. The slow diffusion carriers will reach the depletion region and led
    to the slow response of the p-n PD.
    Researchers have studied several device layouts to optimize device performance. Silicon
    photodiodes (PDs) with different layouts in standard 0.18-μm CMOS technology are
    systematically presented and discussed first in this dissertation. Different layout geometries
    of PDs are realized including conventional rectangle, square and octagon layouts. A basic
    p-n PD with octagon layout demonstrates higher responsivity and lower capacitance with
    improved bandwidth. Therefore, the vertically illuminated PDs with octagonal layout are
    used in this dissertation.
    To improve the speed characteristics of the photodetector, three methods are proposed to
    improve the bandwidth. First, a basic p-n PD with body contact presents a method to
    eliminate the slow photocarriers by adopting a body contact design to create a current flow
    under the PD to remove the slow diffusion carriers.. With the appropriate bias between PD
    and body contact, a low bias and high-speed PD can be achieved for practical applications.
    The 3dB bandwidth of PD is 2.46 GHz at low bias 3 V.
    Secondly, the edge-illuminated Si PDs with standard CMOS technology by employing
    an MEMS process to expose the coupling edge surface is realized. A single-mode lensed
    fiber is employed to inject light into the depletion region of the PD, thereby limiting and
    reducing the diffusive carriers within the bulk Si substrate. Consequently, the
    edge-illuminated PD with conventional rectangle layout shows the improved 3-dB
    bandwidth from 1.4 GHz to 2.6 GHz in comparison to the vertically illuminated Si PDs.
    The third method is that using deep n-well implantation in standard CMOS technology
    to block the slow diffusion carriers from substrate. Two different bias schemes (normal
    bias and extra bias) on the deep n-well are used to analyze the effects of deep n-well bias on the bandwidth and gain-bandwidth performances of Si PDs. The extra bias in the PD
    not only blocks the hole and collects electrons from the substrate, but also improves the PD
    performance. This design achieves the highest bandwidth (8.7 GHz) and a large
    gain-bandwidth product of 542 GHz with a reverse bias of 11.45 V and an extra voltage of
    11.45 V but low-magnitude of output signal in standard CMOS technology. This is the
    highest bandwidth reported for silicon photodetectors fabricated using standard CMOS
    technology and the highest gain-bandwidth product in 0.18 µm CMOS technology. In
    addition to bandwidth, excess noise measurement is a way to confirm the effect of
    excluding substrate carrier. Si PDs in this dissertation with extra bias in the deep n-well
    demonstrates the lowest noise figure (noise factor) of 5.3 due to the removal of slow
    diffusion carriers.

    Abstract III Acknowledgement V Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of this Dissertation 8 Chapter 2 Body Bias Technique for Low-voltage Operation 10 2.1 Introduction 10 2.2 Symmetric Layout 11 2.2.1 Device Structures 11 2.2.2 Devices Performance 13 2.3 Body Bias Technique 16 2.3.1 Device Structures 16 2.3.2 Body Bias Technique and Simulation 18 2.3.3 Devices Performance 23 2.3.3.1 DC Performance 23 2.3.3.2 AC Performance 27 2.3.3.3 Excess noise performance 31 2.4 Summary 33 Chapter 3 Edge-illuminated Si Photodiodes 34 3.1 Introduction 34 3.2 Design Description 34 3.3 Devices Performance 39 3.3.1 DC Performance 39 3.3.2 AC Performance 42 3.3.3 Excess noise performance 44 3.4 Summary. 45 Chapter 4 Effect of Deep N-Well Bias 46 4.1 Introduction 46 4.2 Device Structure 46 4.3 Bias Schemes and Simulation 49 4.4 Devices Performance 52 4.4.1 DC Performance 52 4.4.2 AC Performance 55 4.4.3 Excess noise performance 58 4.5 Summary 59 Chapter 5 Conclusion and Future Work 60 5.1 Conclusion 60 5.2 Future Work 62 5.2.1 Ge film on CMOS PD 62 5.2.2 CMOS PD with deep substrate contact 64 5.2.3 CMOS PD with substrate removing 65 References 68 Publication List 73 Journal Papers List 73 Conference Papers 73 Patents and Honor 74

    [1] J. Choi, B. J. Sheu, and O. T. C. Chen, “A monolithic GaAs receiver for optical
    interconnect systems,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 328–331, Mar. 1994.
    [2] C. Takano, K. Tanaka, A. Okubora, and J. Kasahara, “Monolithic integration of 5-Gb/s
    optical receiver block for short distance communication,” IEEE J. Solid-State Circuits, vol.
    27, no. 10, pp. 1431–1433, Oct. 1992.
    [3] M. Bitter, R. Bauknecht, W. Hunziker, and H. Melchior, “Monolithic InGaAs-InP
    p-i-n/HBT 40-Gb/s optical receiver module,” IEEE Photon. Technol. Lett., vol. 12, no. 1,
    pp. 74–76, Jan. 2000.
    [4] H.-G. Bach, A. Beling, G. C. Mekonnen, and W. Schlaak, “Design and fabrication of
    60-Gb/s InP-based monolithic photoreceiver OEIC’s and modules,” IEEE J. Sel. Topics
    Quantum Electron., vol. 8, no. 6, pp. 1445–1450, Nov./Dec. 2002.
    [5] D. Huber, R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf, A. Neiger, M.
    Rohner, I. Schnyder, V. Schwarz, and A. Jackel, “InP/InGaAs single HBT technology for
    photoreceiver OEIC’s at 40 Gb/s and beyond,” J. Lightw. Technol., vol. 18, no. 7, pp.
    992–1000, Jul. 2000.
    [6] K. Nishi1, J. Fujikata, T. Ishi, D. Okamoto, and K. Ohashi, “Development of
    nano-photodiodes with a surface plasmon antenna,” in Proc. 20th Annu. Meeting IEEE
    Lasers and Electro-Optics Soc., 2007, pp. 574–575.
    [7] M. Jutzi, M. Berroth, G. W¨ohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical
    incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett., vol. 17, no.
    7, pp. 1510–1512, Jul. 2005.
    [8] Y. Kanga, M. Morsea, M. J. Panicciaa, M. Zadkab, Y. Saadb, G. Saridb, A. Pauchardc,
    W. S. Zaouid, H.-W. Chend, D. Daid, J. E. Bowersd, H.-D. Liue, D. C. Mcintoshe, X.
    Zheng, and J.-C. Campbell, “Monolithic Ge/Si avalanche photodiodes,” in Proc. 6th IEEE
    Int. Conf. Group IV Photonics, 2009, pp. 25–27.
    [9] M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n
    photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett., vol. 18, no. 23,
    pp. 2442–2444, Dec. 2006.
    [10] Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C.
    Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers 69

    grown on Si substrate,” J. Appl. Phys., vol. 98, no. 1, pp. 013501–013501-9, Jul. 2005.
    [11] T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia,
    “40Gb/s Ge-on-SOI waveguide photodetectors by selective Ge growth,” presented at the
    Opt. Fiber Commun. Conf., San Diego, CA, Feb. 24, 2008.
    [12] C. L. Schow, L. Schares, S. J. Koester, G. Dehlinger, R. John, and F. E. Doany, “A
    15-Gb/s 2.4-V optical receiver using a Ge-on-SOI photodiode and a CMOS IC,” IEEE
    Photon. Technol. Lett., vol. 18,no. 19, pp. 1981–1983, Oct. 2006.
    [13] L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D.
    A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared
    dipole antenna,” Nat. Photon., vol. 2, no. 4, pp. 226–229, 2008.
    [14] Chen, L. and Lipson, M., “Ultra-low capacitance and high speed germanium
    photodetectors on silicon,” Opt. Expr., vol. 17, pp. 7901–7906, 2009.
    [15] L. Vivien, J. Osmond, J. F´ed´eli, D. Marris-Morini, P. Crozat, J. Damlencourt, E.
    Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a
    silicon-on-insulator waveguide,” Opt. Expr., vol. 17, pp. 6252–6257, 2009.
    [16] S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov,
    “CMOS-integrated 40 GHz germanium waveguide photodetector for on-chip optical
    interconnects,” presented at the Opt. Fiber Commun. Conf. (OFC), San Diego, CA, 2009.
    [17] R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche
    photodiodes: Theory,” IEEE Trans. Electron. Dev., vol. ED-19, no. 6, pp. 703–713, Jun.
    1972.
    [18] Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A.
    Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh,
    and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz
    gain-bandwidth product,”Nat. Photon., vol. 3, no. 1, pp. 59–63, 2008.
    [19] G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response
    associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,”
    Appl. Phys. Lett., vol. 83, no. 6, pp. 1249–1251, 2003.
    [20] J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced
    bandwidth-enhancement of a Si-SiGe based avalanche photodiode operating at a
    wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol.
    Lett., vol. 19, no. 7, pp. 474–476, Apr. 2007.
    [21] C. Rooman, D. Coppee, and M. Kuijk, “Asynchronous 250 Mb/s optical receivers
    with integrated detector in standard cmos technology,” IEEE J. Solid State Circuits, vol. 35, 70

    pp. 953–958, 2000.
    [22] W.-Z. Chen, S. H. Huang, G. W. Wu, C.-C. Liu, and Y.-T. Huang,“A 3.125 Gbps
    CMOS fully integrated optical receiver with adaptive analog equalizer,” in Proc. IEEE
    Asian Solid-State Circuits Conf. (A-SSCC), 2007, pp. 396–399.
    [23] M.-J. Lee and W.-Y. Choi, “A silicon avalanche photodetector fabricated with
    standard CMOS technology with over 1 THz gain-band-width product,” Opt. Exp., vol. 18,
    pp. 24189–24194, 2010.
    [24] W.-Z. Chen and S.-H. Huang, “A2.5 Gbps CMOS fully integrated optical receiver
    with lateral PIN detector,” in Proc. Custom Integrated Circuits Conf. (CICC), 2077, pp.
    293–296.
    [25] B. Ciftcioglu, L. Zhang, J. Zhang, J. R. Marciante, J. Zuegel, R. Sobolewski, and H.
    Wu, “Integrated silicon PIN photodiodes using deep N-well in a standard 0.18-µm CMOS
    technology,” J. Lightw. Technol., pp. 3303–3313, 2009.
    [26] K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and
    electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-µm
    CMOS process,” IEEE Photon. Technol. Lett., vol.22, pp. 932–934, 2010.
    [27] S. M. Csutak, J. D. Schaub, W. E. Wu, R. Shimer, and J. C. Campbell,
    “CMOS-compatible high-speed planar silicon photodiodes fabricated on SOI substrates,”
    IEEE J. Quantum Electron., vol. 38, pp. 193–196,2002.
    [28] C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, “Design and implementation of
    high-speed planar Si photodiodes fabricated on SOI substrates,” IEEE J. Quantum
    Electron., vol. 35, pp. 1478–1482, 1999.
    [29] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, "10-Gb/s
    all-silicon optical receiver," IEEE Photonics Technology Letters, vol. 15, no.5, pp.
    745-747, May 2003.
    [30] W. K. Huang, Y. C. Liu, and Y. M. Hsin, “Bandwidth enhancement in Si photodiode
    by eliminating slow diffusion photocarriers,” Electron. Lett., vol. 44, pp. 52–53, 2008.
    [31] F. Tavernier and M. Steyaert, “A 5.5 Gbit/s optical receiver in 130 nm CMOS with
    speed-enhanced integrated photodiode,” in Proc. ESSCIRC, 2010, pp. 542–545.
    [32] S.-H. Huang, W.-Z. Chen, Y.-W. Chang, and Y.-T. Huang, “A 10-Gb/s OEIC with
    meshed spatially-modulated photo detector in 0.18- µmCMOS technology,” IEEE J.
    Solid-State Circuits, vol. 46, pp. 1158–1169, 2011.
    [33] J.-S. Youn, H.-S. Kang, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, “High-speed CMOS 71

    integrated optical receiver with an avalanche photodetector,” IEEE Photon. Technol. Lett.,
    vol. 21, pp. 1553–1555, 2009.
    [34] K. Iiyama, N. Sannou, and H. Takamatsu, “Avalanche amplification in silicon lateral
    photodiode fabricated by standard 0.18 µm CMOS process,” IEICE Trans. Electron., vol.
    E91-C, pp. 1820–1823, 2008.
    [35] K. Iiyama, H. Takamatsu, and T. Maruyama, “Silicon lateral avalanche photodiodes
    fabricated by standard 0.18 µm complementary metal-oxide-semiconductor process,” in
    Proc. Int. Conf. Solid State Devices Mater. (SSDM 2009), pp. 510–511.
    [36] H. S. Kang, M. J. Lee, and W. Y. Choi, “Si avalanche photodetectors fabricated in
    standard complementary metal oxide-semiconductor process,” Appl. Phys. Lett., vol. 90,
    pp. 151118.1–151118.3, 2007.
    [37] W. K. Huang, Y. C. Liu, and Y. M. Hsin, “A high-speed and high-responsivity
    photodiode in standard CMOS technology,” IEEE Photon.Technol. Lett., vol. 19, pp.
    197–199, 2007.
    [38] F.-P. Chou, G.-Y. Chen, C.-W. Wang, Y.-C. Liu, W.-K. Huang, and Y.-M. Hsin,
    “Silicon photodiodes in standard CMOS technology,” IEEE J. Sel. Topics Quantum
    Electron., vol. 17, pp. 730–740, 2011.
    [39] Chia-Sung Chiu, Kun-Ming Chen, Guo-Wei Huang, Ming-I. Chen, Yu-Chi Yang, and
    Kai-Li Wang, “Capacitance Characteristics Improvement and Power Enhancement for
    RF LDMOS Transistors Using Annular Layout Structure,” IEEE Transactions on
    microwave theory and techniques, Vol. 59, no. 3, March 2011
    [40] P. Lopez, M. Oberst, H. Neubauer, and J. Hauer, “Performance analysis of high-speed
    MOS transistors with different layout styles,” in Proc.Int. Circuits Syst. Conf., May 2005,
    pp. 3688–3691.
    [41] A. Rochas, G. Ribordy, B. Furrer, P. Besse, and R. Popovic, “Low-noise silicon
    avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans.
    Electron Devices, vol. 49, no. 3, 387, 2002
    [42] Andrew Pan, D-S Pan, and C- O Chui, “Mechanism for excess noise in mixed
    tunneling and avalanche breakdown of silicon,” Appl. Phys. Lett. 96, 263503, 2010
    [43] Lucio Pancheri, Mauro Scandiuzzo, David Stoppa, and Gian-Franco Dalla Betta,
    “Low-Noise Avalanche Photodiode in Standard 0.35-µm CMOS Technology,” IEEE Trans.
    Electron Devices, vol. 55, 457, 2008
    [44] C-C Chiu and J-W Hong, “Amorphous Separated Absorption and Multiplication Superlattice-like Avalanche Photodiodes (Amorphous SAM-SAPD’s)”, Master Thesis,
    Chungli, Taiwan, National Central University, 2004
    [45] T. Takeuchi, T. Nakata, K. Makita, and M. Yamaguchi, “High-speed, high-power and
    high-efficiency photodiodes with evanescently coupled graded-index waveguide,” Electron.
    Lett., vol. 36, pp. 972–973, May 2000.
    [46] J.W. Shi, P.-H. Chiu, F.-H. Huang, Y.-S. Wu, Ja-Yu Lu, C.-K. Sun, C.-W. Liu, P.-S.
    Chen, “Si/SiGe-based edge-coupled photodiode with partially p-doped photoabsorption
    layer for high responsivity and high-power performance,” IEEE Applied Physics Letters,
    vol. 88, issue. 19, pp. 193506-193506-3, May 2006.
    [47] J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, T. H. Loh, M. B. Yu, S. J. Lee,
    Guo-Qiang Lo, and D.-L. Kwong, “Evanescent-Coupled Ge p-i-n Photodetectors on
    Si-Waveguide With SEG-Ge and Comparative Study of Lateral and Vertical p-i-n
    Configurations, ” IEEE Electron Device Letters, vol. 29, issue.5, pp. 445-448, May 2008.
    [48] Behrooz Nakhkoob, Sagar Ray, and Mona M. Hella, “High speed photodiodes in
    standard nanometer scale CMOS technology: a comparative study,” Optics Express, Vol.
    20, no. 10, pp.11256-11270, May 2012.
    [49] S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering
    Press, 1997).
    [50] J. G. Su, H. M. Hsu, S. C. Wong, C. Y. Chang, T. Y. Huang, and J. Y. C. Sun,
    “Improving the RF performance of 0.18-µm CMOS with deep n-well implantation,” IEEE
    Electron. Device Lett., vol. 22, no. 10, pp. 481–483, Oct. 2001.

    QR CODE
    :::