跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳秋玉
Chiu-yu Chen
論文名稱: 利用指定功能軌跡的滑鼠特徵分析以提升識別率
A feasibility study on using mouse dynamics of a specific operation in a general application to improve the accuracy of user verification
指導教授: 梁德容
Deron Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 軟體工程研究所
Graduate Institute of Software Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 49
中文關鍵詞: 特徵萃取滑鼠特徵識別使用者分類器
外文關鍵詞: Mouse Dynamics, feature extraction, classifier, user verification
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多元化的資訊發展與環境,盜用他人的帳號密碼執行不合法的犯罪行為頻傳,顯示過去採取一次性登入(single sign-on)做為電腦系統安全認證的方式已經不敷使用。因此,許多學者分別提出以滑鼠操作軌跡(Trajectory)為基礎的辨識/識別技術做為輔助。目前主要區分成Histogram與Mouse Dynamics兩類技術。然而,Histogram的辨識/識別能力會受到應用程式與工作環境的影響。Mouse Dynamics的部分,則因為過去的軌跡樣本收集方式,一部份會中斷使用者的正常工作;另一部分則是大量收集各種軌跡資料,其內容複雜且經常包含無辨識能力或影響辨識/識別的雜訊問題。因此,本團隊提出收集—指定應用程式且指定功能—的滑鼠操作軌跡的方式以純化樣本資料並提高識別的準確率。


    In recent years, with the popularization of computer and network, the single sign-on approach of the tradition authentication mechanism may not enough to protect our cyber assets in the future since the illegal cybercrimes access is still on the increase. Consequently, many researchers propose a re-authentication concept that uses the mouse dynamics to verify the user''s identity.
    At the present time, mouse trajectories were collected from all applications or a specified application (such as Internet Explorer) for implementing verification models. However, the mouse trajectories include many types of activity and noise that will affect the verification accuracy. Therefore, this thesis proposes a method that only obtains the specific mouse trajectories to category trajectories and to filter noise for improving the verification accuracy of the implemented models. To prove the proposed method, this thesis conducts experiments to compare the verification rate from three types of trajectories collection. The experiment results show that the accuracy of the proposed method is better than the others. The successful verification rate in our model is 94%. This thesis technique can be applied to existing environmental and upgrade computer security.

    中文摘要-----------------------------I ABSTRACT-----------------------------II 誌謝---------------------------------III 目錄---------------------------------IV 圖目錄-------------------------------VI 表目錄-------------------------------VIII 第一章 緒論-------------------------1 1-1 前言-------------------------1 1-2 研究動機---------------------3 1-3 研究目的---------------------3 1-4 論文架構---------------------4 第二章 文獻探討---------------------5 第三章 實驗設計---------------------9 3-1 資料收集---------------------9 3-2 軌跡資料前置處理-------------10 3-2-1軌跡資料分類------------10 3-2-2開啟檔案的軌跡定義------11 3-2-3資料轉換----------------13 3-3 系統建模(SYSTEM MODELING)----14 3-3-1抽樣方式----------------15 3-3-2特徵萃取----------------16 3-3-3分類器(CLASSIFIER)------18 3-3-4模型(MODELS)訓練與測試--25 第四章 實驗結果與分析---------------27 第五章 研究結論與未來展望-----------32 5-1 結論-------------------------32 5-2 未來展望---------------------32 參考文獻-----------------------------34 附錄一-------------------------------37

    [1]A. A. E. Ahmed, I. Traore, “A Statistical Model for Biometric Verification”, pp. 141-161, May, 2006, available from: http://www.isot.ece.uvic.ca/publications/behavioral-biometrics/chapter07-3.pdf
    [2]A. A. E. Ahmed, I. Traore, “A New Biometric Technology Based on Mouse Dynamics”, IEEE Trans. on Dependable and Secure Computing, vol. 4, no. 3, pp. 165-179, July-September, 2007.
    [3]C.-C. Chang, C.-J. Lin, “LIBSVM -- A Library for Support Vector Machines Version 2.91”, 2010, available from: http://www.csie.ntu.edu.tw/~cjlin/
    [4]K.-T. Chen, H.-K. Pao, H.-C. Chang, "Game Bot Identification Based on Manifold Learning", 7th Workshop on Network and Systems Support for Games (NetGames), Worcester, Massachusetts, USA, pp. 21-22, Oct. 2008.
    [5]K.-T. Chen, A. Liao, H.-K. Pao, H.-H. Chu, "Game Bot Detection Based on Avatar Trajectory", 7th International Conference on Entertainment Computing, Pittsburgh, USA, pp. 25 - 27, Sep. 2008.
    [6]R. A.J. Everitt, P. W. McOwan, “Java-Based Internet Biometric Authentication System”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1166-1172, 2003.
    [7]S. Furnell, N. Clarke, “Biometrics: no silver bullets”, Computer Fraud & Security, pp. 9-14, Aug. 2005.
    [8]H. Gamboa, A. Fred, “A behavior biometric system based on human-computer interaction”, Proceedings of SPIE, vol. 5040, pp. 381-392, Aug. 2004.
    [9]V. M. Jr., Z. Riha, “Toward reliable user authentication through biometrics”, IEEE Security and Privacy, vol. 1, no. 3, pp. 45-49, May 2003.
    [10]S. Lin, K. Ying, S. Chen, Z. Lee,” Particle swarm optimization for parameter determination and feature selection of support vector machines”. Expert system with applications. vol.35, no.4, pp.1817-1824, 2008.
    [11]A. Nazar, I. Traore, A. A. E. Ahmed, “Inverse Biometrics for Mouse Dynamics”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 22, no. 3, pp. 461-495, 2008.
    [12]M. Pusara, C. E. Brodley, “User re-authentication via mouse movements”, Proc. ACM Workshop Visualization and Data Mining for Computer Security (VizSEC/DMSEC''04), Washington, DC, USA, pp. 1-8, Oct. 29 2004.
    [13]K. Revett, H. Jahankhani, S. T. de Magalhães, H. M.D. Santos, “A Survey of User Authentication Based on Mouse Dynamics”, Communications in Computer and Information Science (Global E-Security), vol. 12, pp. 210-219, 2008.
    [14]C. Shen, Z. Cai, X. Guan, H. Sha, J. Du, “Feature Analysis of Mouse Dynamics in Identity Authentication and Monitoring”, IEEE International Conference on Communications (ICC ''09), pp. 1-5, 2009.
    [15]T. Sim, S. Zhang, R. Janakiraman, S. Kumar, “Continuous Verification Using Multimodal Biometrics”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 687-700, April 2007.
    [16]A. F. Syukri, E. Okamoto, M. Mambo, “A User Identification System Using Signature Written with Mouse”, Lecture Notes in Computer Science (Information Security and Privacy) (ACISP''98), vol. 1438, pp. 403-414, 1998.
    [17]M. Sugiyama, “Local Fisher discriminant analysis for supervised dimensionality reduction”, Proceedings of 23rd International Conference on Machine Learning , pp. 905-912, Jun. 2006b.
    [18]M. Sugiyama, “Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis”, Journal of Machine Learning Research, vol.8, pp. 1027-1061, May 2007.
    [19]J. Tenenbaum, V. de Silva, and J. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science, 290(5500), pp. 2319-2323, December 2000.
    [20]K. Hayashi, E. Okamoto, and M. Mambo,” Proposal of User Identification Scheme Using Mouse”, in ICICS’97: Proceedings of the First International Conference on Information and Communication Security, PP.144-148, 1997.
    [21]K.-H. Tang, Y.-H. Lee, “Dynamic Mouse Speed Scheme Design Based on Trajectory Analysis”, Lecture Notes in Computer Science (Ergonomics and Health Aspects of Work with Computers) (HCII 2007), vol. 4566, pp. 329-338, 2007.
    [22]K. Revett, “Behavioral Biometrics: A Remote Access Approach”, John Wiley & Sons, Ltd. , 2008.
    [23]A. Weiss, A. Ramapanicker, P. Shah, S. Noble, L. Immohr, “Mouse Movements Biometric Identification: A Feasibility Study”, Proceedings of Student/Faculty Research Day, CSIS, Pace University, pp. 1-8, May 4th, 2007.

    QR CODE
    :::