跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁瑞坪
Ran-Pen Wo
論文名稱: 鎢酸鋯陶瓷之製作
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 66
中文關鍵詞: 負熱膨脹係數熱補償元件
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究將氧化鎢與氧化鋯以適當的化學計量比均勻混合,利用固態燒結的方法製作鎢酸鋯陶瓷。首先以X光粉末繞射檢測陶瓷的組成和熱分析儀量測陶瓷熱膨脹係數,找出最佳的燒結時間,接著以光學顯微鏡及掃瞄式電子顯微鏡觀察陶瓷內部微觀性質,最後再以軟體程式作熱傳模擬分析,經過程式分析與陶瓷實作的交互偵錯,開發出良好的陶瓷製程技術,一方面可維持鎢酸鋯的高負熱膨脹特性,另一方面則可獲得高緻密性與高強度的陶瓷,適合後續的加工與複合材料應用。
    由實驗的結果,可知將生胚放置在加熱爐內,以每分鐘5℃的升溫速率,燒結停留4小時再迅速取出放在空氣中冷卻,可得效果不錯的負熱膨脹效應。由於氧化鎢在高溫會發生揮發的情形,間接影響陶瓷到的機械性質,所以在生胚的上方加蓋,改善氧化鎢在高溫時的揮發情形,陶瓷之燒結停留時間將延長至8小時,其熱膨脹數不僅可達 -10 ×10-6K-1以上,而且其內部反應較均勻,空孔出現的情形也明顯的減少,加工時也可發覺其機械強度有明顯的增加。


    目錄 頁碼 摘要………………………………………………………………………….Ⅰ 誌謝………………………………………………………………………….Ⅱ 目錄………………………………………………………………………….Ⅲ 表目錄……………………………………………………………………….Ⅴ 圖目錄……………………………………………………………………….Ⅵ 第一章 緒論………………………………………………………………….1 1.1 簡介………………………………………………………………………1 1.2 文獻回顧…………………………………………………………………2 1.3 鎢酸鋯應用………………………………………………………………4 1.4 研究目的…………………………………………………………………6 第二章 負熱膨脹材料之機構與製作……………………………………….7 2.1 負熱膨脹材料之機構……………………………………………………7 2.2 鎢酸鋯之機構…………………………………………………………8 2.3 鎢酸鋯陶瓷之製作原理…………………………………………………9 2.4 鎢酸鋯陶瓷之製備過程……………………………………………10 2.5 陶瓷之檢測與分析…………………………………………………11 第三章 結果與討論………………………………………………………13 3.1 圓錠陶瓷之製程與檢測……………………………………………13 3.2 方形板陶瓷製程與檢測結果………………………………………….15 3.2.1 未加蓋之方形板………………………………………………….15 3.2.2 加蓋之方形板…………………………………………………….16 3.3 陶瓷微結構與分析…………………………………………………….19 3.4 陶瓷的熱流分析……………………………………………………….22 3.5 單晶生長……………………………………………………………….22 第四章 結論…………………………………………………………………23 參考文獻…………………………………………………………………….25

    [1]J. Graham, A. D. Wadsley, J. H. Weymouth, and L. S.Williams, A New Ternary Oxide, ZrW2O8, J. Am. Ceram. Soc. 42 (1959) 570.
    [2]L. Y. Chang, M. G. Scroger, and B. Phillips, Condensed Phase Relations in the Systems ZrO2-WO2-WO3 and HfO2-WO2-WO3, J. Am. Ceram. Soc. 50 (1967) 211.
    [3]C. Martinek and F. A. Hummel, Linear Thermal Expansion of Three Tungstates,J. Am. Ceram. Soc. 51 (1968) 227.
    [3]C. Martinek and F. A. Hummel, Linear Thermal Expansion of Three Tungstates,J. Am. Ceram. Soc. 51 (1968) 227.
    [5]T. A. Mary, J. S. O. Evans, T. Vogt, A. W. Sleight, Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science 272 (1996) 90.
    [6]J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian, and A. W. Sleight, Negative Thermal Expansion in ZrW2O8 and HfW2O8, Chem. Mater. 8 (1996) 2809.
    [7]A. W. Sleight, Compounds That Contract on Heating, Inorg. Chem. 37(1998)2854.
    [8]A. W. Sleight, Negative Thermal Expansion Material, US Pat., 5, 322, 559 Jun. 21, (1994).
    [9]A. W. Sleight, Negative Thermal Expansion Material, US Pat., 5, 433, 778 Jul. 18, (1995).
    [10] C. Martinek and F. A. Hummel, Subsolidus Equilibria in the System ZrO2-WO3-P2O5, J. Am. Ceram. Soc. 53 (1970) 160.
    [11]A. W. Sleight, J. S. O. Evans, T. A. Mary, Negative Thermal Expansion Materials, US Pat., 5, 514, 360 May. 7, (1996).
    [12]A. P. Wilkinson, C. Lind, S. Pattanaik, A New Polymorph of ZrW2O8 Prepared Using Nonhydrolytic Sol-Gel Chemistry, Chem. Mater. 11 (1999) 101.
    [13]Y. Yamamura, N. Nakajima, T. Tsuji, Heat Capacity Anomaly Due to the a-b Structural Phase Transition in ZrW2O8,Solid State Communications. 114 (2000) 453-455.
    [14]J. S. O. Evans, T. A. Mary, A. W. Sleight, Negative Thermal Expansion Materials, Physica B. 241 (1998) 311.
    [15]D. A. Fleming, D. W. Johnson, P. J. Lemaire, Article Comprising A Temperature Compensated Optical Fiber Refractive Index Grating, US Pat., 5, 694, 503 Dec. 2, (1997).
    [16]L. M. Sheppard, ZrW2O8 Could Help Fiber Optics, Photonics Spectra, 34 (1999).
    [17]C. Verdon, and D. C. Dunand, High-Temperature Reactivity in the ZrW2O8-Cu System, Scripta Mater, 36 (1997) 1075.
    [18]H. Holzer, D. C. Dunand, Phase Transformation and Thermal Expansion of Cu/ZrW2O8 Metal Matrix Composites, J. Mater. Res. 14 (1999) 780.
    [18]H. Holzer, D. C. Dunand, Phase Transformation and Thermal Expansion of Cu/ZrW2O8 Metal Matrix Composites, J. Mater. Res. 14 (1999) 780.
    [18]H. Holzer, D. C. Dunand, Phase Transformation and Thermal Expansion of Cu/ZrW2O8 Metal Matrix Composites, J. Mater. Res. 14 (1999) 780.
    [21]J. D. Jorgensen, S. Short, Z. Hu, S. Teslic, S.Short, D.N. Argyriou, Pressure-induced Cubic-to-OrthorhombicPhase Transition in ZrW2O8, Physical Review B. 59 (1999) 215.
    [22]J. S. O. Evans, W. I. F.David, A.W. Sleight, Structural Investigation of the Negative-Thermal-Expansion Material ZrW2O8, Acta Crystallogr B. 55 (1999) 333.
    [23]G. R. Kowach, Growth of Single Crystals of ZrW2O8, J. Crystal Growth. 212 (2000) 167.
    [24]胡杰, 雷射加熱提拉法生長單晶光纖時熱流的影響, 國立中央大學機械工程研究所碩士論文(1991).

    QR CODE
    :::