跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭君育
Chun-Yu Hsiao
論文名稱: 具耦合電漿子增強之可見光波段電漿子光偵測器
Hot-Electron-Based, Coupled-Plasmon-Enhanced Plasmonic Photodetector at Visible Frequencies
指導教授: 張殷榮
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 光偵測器熱電子內部光輻射表面電漿極化子
外文關鍵詞: photodetector, hot-electron, internal photoemission, surface plasmon polaritons
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用數值模擬、實際製程與量測來設計並且探討具耦合電漿子增強之可見光波段電漿子光偵測器。以橫向磁場極化平面波入射利用粒子群聚演算法優化後所得具特殊旋轉角之二維奈米金屬四角柱光柵之元件結構,中間層鋁的吸收率相當地寬頻,在波長515 nm 至800 nm 超過50%,在波長588 nm 至693 nm 甚至超過60%。另外,此設計的光學特性在可見光波段對於入射光的極化角度不敏感。在和同尺寸之單純「氮化矽-鋁-二氧化鈦-銀」平板結構比較後,可知本研究所設計出之光電轉換元件之所以有高且寬頻的吸收,主要因為二維週期性奈米正四角柱結構產生光柵耦合,可在不同波長時激發中間層鋁上下兩介面之表面電漿子以及特定波長時的間隙電漿共振,導致中間層鋁吸收率增加。在二氧化鈦層中在波長400 nm 附近入射光在該層來回反射的相位差幾近2π,代表平面波在此層產生建設性干涉使得鄰近的中間層鋁吸收率大幅增加。
    我們將設計出之電漿子光偵測器製作出來並量測於不同之入射光極化角度時之反射率頻譜以及單一極化角度時之電流─電壓圖。由量測結果可得元件對於入射光之極化角度不敏感,此結果與數值模擬相符於波長範圍458.82 nm 至614.55 nm 間,反射率對各極化角度的量測值皆低於20%。電性量測結果最佳之元件在入射光波長為638.9 nm,偏壓-1 V 情況下,光電流為428.7 μA/mm^2,其響應度為301.6 mA/W mm^2,外部量子效率為2.72047%,實驗結果皆遠高於文獻中於同波長下已發表之結果。


    In this research, we investigate the hot-electron-based, coupled-plasmon-enhanced plasmonic photodetector at visible frequencies numerically and
    experimentally. The absorptance in mid-Al film of the rotated nano-prisms grating architecture optimized by particle swarm optimization is higher than 50% which begins from the wavelength 515 nm to 800 nm, in addition, the absorptance in mid-metal film is even higher than 60% which begins from the wavelength 588 nm to 693 nm, it is very boardband. Moreover, the optical properties of the photodetector are polarization-independent in the visible region. Compared with the same size of planar structure, the high and boardband absorptance is based on the 2D periodic nano-quadrangular prisms which excite surface plasmon polaritons in the interfaces above and below mid-Al film and excite gap plasmon resonance. The absorptance peak around λ0=400 nm in mid-metal film is caused by constructive interference between the multiple reflections of light between the two reflecting surfaces in titanium dioxide layer.
    We successfully fabricate the plasmonic photodetector. Later, we measure the reflectance spectrum with mutative polarized plane wave and the current-voltage curve with single polarized plane wave. From the measurement results, we can prove that the reflectance of photodetector is polarization-independent which result is same as simulation. The reflectance is lower than 20% which begins from the wavelength 458.82 nm to 614.55 nm. In the best electrical result of the measurement which is incident by wavelength 638.9 nm source and apply bias voltage -1 V, current under illumination is 428.7 μA/mm^2, responsivity is 301.6 mA/W mm^2$ and EQE is 2.72047$\%$. The measured results are higher than the references which have published in the same wavelength.

    中文摘要..................................................f 英文摘要..................................................g 謝誌......................................................h 目錄......................................................i 圖目錄....................................................j 表目錄....................................................s 一、緒論..................................................1 1.1前言...................................................1 1.2文獻回顧...............................................1 1.3研究動機...............................................8 二、背景理論.............................................11 2.1表面電漿共振之激發.....................................11 2.1.1金屬─介電質之單一介面之表面電漿極化子.................11 2.1.2金屬─介電質─金屬介面之表面電漿極化子..................13 2.1.3光柵耦合............................................15 2.1.4間隙電漿共振........................................15 2.2電磁場於有損材料內之能量吸收...........................18 2.3熱電子之生成..........................................19 2.4內部光輻射效應........................................19 2.5散射截面計算..........................................20 三、元件設計與特性分析....................................22 3.1元件結構與分析方法.....................................22 3.2數值結果之收斂性測試...................................23 3.3元件結構尺寸的優化.....................................24 3.4元件的分析............................................25 3.4.1光柵繞射階數與中間層鋁之吸收率峰值關係................30 3.4.2利用散射截面之概念尋找奈米金屬結構形成之間隙電漿共振...32 3.4.3利用散射截面之概念觀察奈米光柵形成之表面電漿極化子.....43 3.5平板結構和有上層奈米金屬結構之比較......................45 3.6氮化矽間隙、中間層鋁和二氧化鈦之厚度對於元件光學特性的影響.......................................................49 3.7優化所得具特殊旋轉角之奈米金屬四角柱設計和沒有 旋轉角之設計之比較........................................53 四、本元件製程與量測......................................57 4.1元件製程..............................................57 4.2量測與討論............................................61 4.2.1入射光極化角度對反射率頻譜之量測......................62 4.2.2電流─電壓量測.......................................65 五、結論.................................................70 參考文獻.................................................72

    [1] C. Clavero, ``Plasmon-induced hot-electron generation at
    nanoparticle/metal-oxide interfaces for
    photovoltaic and photocatalytic devices,'' Nat. Photonics, vol.8, no.2, pp. 95-103, Sep. 2014.
    [2] M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, ``Continuous layer gap plasmon resonators,'' Opt. Express, vol.19, no.20, pp. 19310-19322, Sep. 2011.
    [3] H. Chalabi, D. Schoen, and M. L. Brongersma, ``Hot-electron photodetection with a plasmonic nanostripe antenna,'' Nano Lett., vol.14, no.3, pp. 1374-1380, Mar. 2014.
    [4] M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, ``Efficient absorption of visible radiation by gap plasmon resonators,'' Opt. Express, vol.20, no.12, pp. 13311-13319, Jun. 2012.
    [5] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, ``Photodetection with active
    optical antennas,'' Science, vol.332, no.6030, pp. 702-704, May 2011.
    [6] J. Jung, T. S$\phi$ndergaard, and S. I. Bozhevolnyi, ``Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface
    plasmon polaritons,'' Phys. Rev. B, vol.79, no.3, Jan. 2009.
    [7] Y. Cui, Jun Xu, K. H. Fung, Y. Jin, A. Kumar, S. He,
    and N. X. Fang, ``A thin film broadband absorber based on multi-sized nanoantennas,'' Appl. Phys. Lett., vol.99, no.25, Dec. 2011.
    [8] W. Li and J. Valentine, ``Metamaterial perfect absorber based hot electron photodetection,'' Opt. Lett., vol.14, no.6, pp. 3510-3514, Jun. 2014.
    [9] F. Wang, and N. A. Melosh, ``Plasmonic energy collection through hot carrier extraction,'' Opt. Lett., vol.11, no.12, pp. 5426-5430, Dec. 2011.
    [10] W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, ``Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε'' metals,'' Appl. Phys. Lett., vol.110, no.10, Mar. 2017.
    [11] Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, ``A thin film broadband absorber based on multi-sized nanoantennas,'' Appl. Phys. Lett., vol.99, no.25, Dec. 2011.
    [12] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, ``Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,'' Nat. Commun., vol.4, Mar. 2013.
    [13] F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, ``Plasmonically enhanced hot electron based photovoltaic device,'' Opt. Express, vol.21, no.6, pp. 7196-7201, Mar. 2013.
    [14] K. Wu, Y. Zhan, S. Wu, J. Deng and X. Li, ``Surface-plasmon enhanced photodetection at communication band based on hot electrons,'' J. Appl. Phys., vol.18, pp. 063101-063110, Aug. 2015.
    [15] M. KarthickRaj, ``Polarization-insensitive two-dimensional periodic metallic absorbers in structured metal-insulator-metal configuration for plasmon-enhanced photoelectric conversion,'' M.S. Thesis, Dept. Optics and Photonics, National Central Univ., Taoyuan, Taiwan, R.O.C. 2016.
    [16] K. H. Shih, ``Theoretical investigations of solar energy conversion based on internal photoemission in metals,'' M.S. thesis, Dept. Optics and Photonics, National Central Univ., Taoyuan, Taiwan, R.O.C. 2016.
    [17] S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007.
    [18] Available: https://reurl.cc/0zmnxY.
    [19] A. D. Semenov, G. N. Gol'tsman, and R. Sobolewski, ``Hot-electron effect in superconductors and its applications for radiation sensors,'' Supercond. Sci. Technol., vol.15, pp. R1-R16, Mar. 2002.
    [20] R. H. Fowler, ``The analysis of photoelectric sensitivity curves for clean metals at various temperatures,'' Phys. Rev., vol.38, no.1, pp. 45-56, Jul. 1931.
    [21] J. Jung and T. Sondergaard, ``Green’s function surface integral equation method for theoretical analysis of scatterers
    close to a metal interface,'' Phys. Rev. B, vol.77, no.24, Jun. 2008.
    [22] K. S. Yee, ``Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,'' IEEE Trans. Antennas Propag., vol.14, no.3, pp. 302-307, May 1966.
    [23] E. D. Palik, Handbook of Optical Constants I-III, Elsevier, Amsterdam, 1997.
    [24] A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, ``Optical properties of metallic films for vertical-cavity optoelectronic devices,'' Appl. Opt., vol.37, no.22, pp. 5271-5283, Aug. 1998.
    [25] H. R. Philipp, ``Optical properties of silicon nitride,'' J. Electrochim. Soc., vol.120, no.2, pp. 295-300, 1973.
    [26] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, ``Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,'' Adv. Opt. Mater., vol.4, no.11, pp. 1780-1786, Nov. 2016.
    [27] Available: https://reurl.cc/zaj0Q.
    [28] D. A. Neamen, Semiconductor Physics and Devices, 4th ed., McGraw-Hill, New York, 2012.
    [29] J. Robertson, ``Band offsets of high dielectric constant gate oxides on silicon,'' J. Non-Cryst. Solids, vol.303, no.1, pp. 94-100, May 2002.

    QR CODE
    :::