| 研究生: |
黃子垣 Tzu-yuan Huang |
|---|---|
| 論文名稱: |
甲烷固態氧化物燃料電池複合系統分析 Analysis of Methane Fed Solid Oxide Fuel Cell Hybrid Systems |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 中溫 、質子傳導 、固態氧化物燃料電池 、渦輪機 、甲醇合成反應 、碳捕捉及再利用 |
| 外文關鍵詞: | Intermediate-temperature, Proton-conducting, Solid oxide fuel cell, Micro gas turbine, Methanol synthesis reaction, Carbon capture and reuse |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對中溫質子傳導型固態氧化物燃料電池複合系統分析。根據理論利用Matlab計算出燃料電池之性能曲線,並應用於商用軟體Thermolib進行系統模擬。文中建立四種不同燃料電池複合系統,各系統之系統配置有些許不同,並且在相同操作條件下進行比較,操作條件為燃料當量比1.4 ~ 1.7、空氣當量比2 ~ 4。
In this research, the performance of intermediate-temperature proton-conducting solid oxide fuel cell hybrid systems is investigated. It is analyzed by using Matlab/Simulink/Thermolib. There are four different fuel cell hybrid systems. The configuration of each system is slightly different, but is analyzed under the same operating conditions. Flow rates of hydrogen and air are controlled by assigning different stoichiometric ratio, which are 1.4 - 1.7 and 2 - 4 respectively.
[1] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[2] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte / electrode-supported solid oxide fuel cells,” pp. 339–347, 2002.
[3] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, vol. 122, no. 1, pp. 9–18, 2003.
[4] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012–1022, Oct. 2006.
[5] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, vol. 250, pp. 21–29, Mar. 2014.
[6] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., vol. 37, no. 8, pp. 1568–78, Aug. 2008.
[7] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, vol. 26, no. 10, pp. 1103–1108, 2001.
[8] A. K. Demin, P. E. Tsiakaras, V. a. Sobyanin, and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor,” Solid State Ionics, vol. 152–153, pp. 555–560, 2002.
[9] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, vol. 7, no. 4, pp. 269–278, 2007.
[10] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, vol. 183, no. 2, pp. 682–686, 2008.
[11] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, vol. 181, no. 35–36, pp. 1568–1576, Nov. 2010.
[12] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, no. 1, pp. 573-578, 1987.
[13] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., vol. 65, no. 1, pp. 581–589, 2010.
[14] J. Bu, P. G. Jönsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3−δ (Ln = Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, vol. 272, pp. 786–793, Dec. 2014.
[15] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation — A review,” Renew. Sustain. Energy Rev., vol. 20, pp. 430–442, 2013.
[16] C. Zamfirescu and I. Dincer, “Thermochimica Acta Thermodynamic performance analysis and optimization of a SOFC-H + system,” vol. 486, pp. 32–40, 2009.
[17] H. Xu, Z. Dang, and B.-F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., vol. 50, no. 1, pp. 1101–1110, Jan. 2013.
[18] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” vol. 158, pp. 1290–1305, 2006.
[19] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant : Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[20] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, vol. 277, pp. 292–303, Mar. 2015.
[21] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, vol. 223, pp. 9–17, 2013.
[22] S. K. Park, J.-H. Ahn, and T. S. Kim, “Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture,” Appl. Energy, vol. 88, no. 9, pp. 2976–2987, Sep. 2011.
[23] N. S. Siefert and S. Litster, “Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants,” Appl. Energy, vol. 107, pp. 315–328, Jul. 2013.
[24] A. Lanzini, T. G. Kreutz, E. Martelli, and M. Santarelli, “Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture,” Int. J. Greenh. Gas Control, vol. 26, pp. 169–184, Jul. 2014.
[25] S. Chen, N. Lior, and W. Xiang, “Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture,” Appl. Energy, vol. 146, pp. 298–312, 2015.
[26] L. Barelli and a. Ottaviano, “Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions,” Energy, vol. 71, pp. 118–129, 2014.
[27] S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, “Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies,” Chem. Eng. Res. Des., vol. 92, no. 11, pp. 2557–2567, 2014.
[28] H. Taghdisian, F. Farhadi, and M. R. Pishvaie, “An optimization-oriented green design for methanol plants,” J. Chem. Technol. Biotechnol., vol. 87, no. 8, pp. 1111–1120, 2012.
[29] D. Milani, R. Khalilpour, G. Zahedi, and A. Abbas, “A model-based analysis of CO2 utilization in methanol synthesis plant,” J. CO2 Util., vol. 10, pp. 12–22, 2015.
[30] R. J. Pearson, M. D. Eisaman, J. W. G. Turner, P. P. Edwards, Z. Jiang, V. L. Kuznetsov, K. a. Littau, L. Di Marco, and S. R. G. Taylor, “Energy storage via carbon-neutral fuels made from CO 2, Water, and Renewable Energy,” Proc. IEEE, vol. 100, no. 2, pp. 440–460, 2012.
[31] A. K. Sayah and A. K. Sayah, “Wind-hydrogen utilization for methanol production: An economy assessment in Iran,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3570–3574, 2011.
[32] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz,王曉紅、黃宏 譯,「燃料電池基礎」,全華科技圖書股份有限公司,2008
[33] http://www.taipower.com.tw/