| 研究生: |
徐子閎 Tzu-Hung Hsu |
|---|---|
| 論文名稱: |
尋找應用於染料敏化太陽能電池之藍色染料 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 染料敏化太陽能電池 、藍色染料 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池(dye-sensitized solar cells, DSC)由於具有多色彩性、半透光性、可撓曲性與低製造成本等優點,是目前相當熱門的研究領域之一。而應用在染料敏化太陽能電池之藍色染料較少見。本實驗室先前合成出以benzothienoisoindigo (BTI)單元為輔助拉電子基的BTI-3、BTI-5和BTI-6皆因最大吸收波長太長,在DMSO中呈現藍綠色。本研究是以BTI-3作為基本結構出發,將BTI單元中的Thiophene由靠近於推電子基改為靠近於拉電子基,設計出BTI-4,使其最大吸收波長藍位移。再來以BTI-3及BTI-5作為基本結構,分別在推電子基及輔助拉電子基(Aa)中間插入一個苯環,合成出BTI-7及BTI-13,藉由染料的平面性下降而使最大吸收波長藍位移。再以BTI-13為基本結構,將推電子基換成正己基或溴基,設計出BTI-15和BTI-17,利用較弱的推電子基及降低染料分子的共軛長度,使染料之最大吸收波長藍位移。結果顯示BTI-4在DMSO中之最大吸收波長比BTI-3短,呈現較接近藍色的藍綠色。BTI-7和BTI-13的最大吸收波長都比相對的BTI-3及BTI-5的短,在DMSO中也都呈現藍綠色,但比BTI-3及BTI-5更接近藍色。BTI-15及BTI-17在DMSO中的顏色比BTI-13更接近藍色,其中含最弱推電子基的BTI-17呈現深藍色。而將染料吸附在TiO2後,因其最大吸收波長產生藍位移,BTI-4與BTI-7呈現綠色,BTI-13、BTI-15與BTI-17之元件呈現紅色。雖然BTI系列染料的LUMO能階都不高,但可透過電解質優化,使TiO2的導帶能階下降,提高染料受光激發的電子注入至TiO2導帶能階的驅動力。其中,有最高莫耳吸收係數乘以染料吸附量和吸附在TiO2有高覆蓋度的BTI-13所組裝之元件有最高的光電轉換效率達4.41%。
Dye-sensitized solar cell (DSC) is a hot research topic because of its multicoloured, semi-transparent, flexible and low cost. A lot of studies are related to find new sensitizers nevertheless blue dye is relatively rare. In this thesis, we focus on the synthesis of blue dyes for DSC. Our previous study showed that BTI-3, BTI-5 and BTI-6 with benzothienoisoindigo (BTI) unit as an auxiliary acceptor (Aa) are blue-green in DMSO due to their λmax values are too long. To blue-shift the λmax of the dyes, BTI-4 is design by changing the position of acceptor part to be connected to the thiophene of BTI unit instead of connecting to the benzene. The λmax value of BTI-4 is smaller than that of BTI-3, but still in blue-green when dissolved in DMSO. BTI-7 and BTI-13 are prepared by inserting an additional phenyl unit between donor and Aa of BTI-3 and BTI-5, respectively. The λmax values of both BTI-7 and BTI-13 are smaller than those of BTI-3 and BTI-5. However, the color of BTI-7 and BTI-13 in DMSO is still blue-green. Finally we prepared BTI-15 and BTI-17 by using n-hexyl and bromide as donor instead of fluorene, respectively. The λmax value of BTI-15 is blue-shifted in DMSO but the color is still blue-green, nevertheless BTI-17 in DMSO is blue. BTI-4 and BTI-7 adsorbed on TiO2 film is green, BTI-13, BTI-15, and BTI-17 adsorbed on TiO2 film is red. These five dyes were used as sensitizers for DSC, BTI-13 has the highest conversion efficiency of 4.41%, due to its high molar absorption coefficient and large dye loading which leads to high surface coverage of when adsorbed on TiO2 film.
[1] J. Potočnik, “Renewable Energy Sources and the Realities of Setting an Energy Agenda”, Science 2007, 315, 810-811.
[2] R. F. Service, “Solar Report Sets the Agenda”, Science 2005, 309, 549.
[3] https://www.nrel.gov/pv/assets/images/efficiency-chart.png, August 13th, 2017.
[4] B. O'Regand, M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 films”, Nature 1991, 353, 737-740.
[5] M. Grätzel, “Photoelectrochemical Cells”, Nature 2001, 414, 338-344.
[6] R. V. M. Otakwa, J. Simiyu, S. M. Waita, J. M. Mwabora, “Application of Dye-Sensitized Solar Cell Technology in the Tropics: Effects of Air Mass on Device Performance”, International Journal of Renewable Energy Research 2012, 2, 369-375.
[7] http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html, August 16th, 2017.
[8] http://www.otichina.com/renewable-energy/photovoltaic-array-solar-panel.htm, August 16th, 2017.
[9] L. Zhang, J. M. Cole, “Anchoring Groups for Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces 2015, 7, 3427-3455.
[10] M. K.Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, “Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) Ruthen-ium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. 1993, 115, 6382-6390.
[11] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc. 2001, 123, 1613-1624.
[12] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat. Chem. 2014, 6, 242-247.
[13] Y. Wu, W. Zhu, “Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances”, Chem. Soc. Rev. 2013, 42, 2039-2058.
[14] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawab, M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun. 2015, 51, 15894-15897.
[15] https://www.energie-experten.ch/de/wohnen/wohnen/farbigkeit-in-der-solartechnik.html, August 16th, 2017.
[16] https://en.wikipedia.org/wiki/Visible_spectrum, August 13th, 2017.
[17] J.-H. Yum, T. W. Holcombe, Y. Kim, K. Rakstys, T. Moehl, J. Teuscher; J. H. Delcamp; M. K. Nazeeruddin; M. Grätzel, “Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore”, Sci. Rep. 2013, 3, 2446-2453.
[18] J. Mao, J. Yang, J. Teuscher, T. Moehl, C. Yi, R. Humphry-Baker,P. Comte, C. Grätzel, J. Hua, S. M. Zakeeruddin, H. Tian, M. Grätzel, “Thiadiazolo[3,4-c]pyridine Acceptor Based Blue Sensitizers for High Efficiency Dye-Sensitized Solar Cells”, J. Phys. Chem. C. 2014, 118, 17090-17099.
[19] T. Maugarda, E. Enauda, P. Choisyb, M. D. Legoy, “Identification of an indigo precursor from leaves of Isatis tinctoria (Woad)”, Phytochemistry 2001, 58, 897-904.
[20] J. Mei, K. R. Graham, R. Stalder, J. R. Reynolds, “Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells”, Org. Lett. 2010, 12, 660-663.
[21] W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu, H. Tian, J. Hua, “Series of New D A-π A Organic Broadly Absorbing Sensitizers Containing Isoindigo Unit for Highly Efficient Dye-Sensitized Solar Cells”, Appl. Mater. Interfaces 2012, 4, 4215-4224.
[22] S.-G. Li, K.-J. Jiang, J.-H. Huang, L.-M. Yang, Y.-L. Song, “Molecular engineering of panchromatic isoindigo sensitizers for dye-sensitized solar cell applications”, Chem. Commun. 2014, 50, 4309-4311.
[23] M. Karakawa, Y. Aso, “Narrow-optical-gap π-conjugated small molecules based on terminal isoindigo and thienoisoindigo acceptor units for photovoltaic application”, RSC Adv. 2013, 3, 16259-16263.
[24] 陳映維,「尋找染料敏化太陽能電池用之藍色染料」,國立中央大學,碩士論文,2016。
[25] F. Zhang, K.-J. Jiang, J.-H. Huang, C.-C. Yu, S.-G. Li, M.-G. Chen, L.-M. Yanga, Y.-L. Song, “A novel compact DPP dye with enhanced light harvesting and charge transfer properties for highly efficient DSCs”, J. Mater. Chem. A 2013, 1, 4858-4863.
[26] S. Crouch, D. Skoog, F. Holler, “Principles of Instrumental Analysis”, 2006, 6th edition
[27] 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
[28] http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
[29] V. V. Pavlishchuk, A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C” Inorganica Chimica Acta 2000, 298, 97-102.
[30] C. Longo, A. F. Nogueira, M.-A. De Paoli, H. Cachet, “Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B. 2002, 106, 5925-5930.
[31] Q. Wang, J. E. Moser, M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, J. Phys. Chem. B. 2005, 109, 14945-14953.
[32] 吳慧屏,「奈米管染料敏化太陽能電池的製備與鑑識及其交流阻抗圖譜的研究」,國立交通大學,碩士論文,2010。
[33] 李佳,「具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池」,國立中央大學,碩士論文,2014。
[34] D. Wang, W. Ying, X. Zhang, Y. Hu, W. Wu, J. Hua, “Near-infrared absorbing isoindigo sensitizers: Synthesis and performance for dye-sensitized solar cells”, Dyes and Pigments 2015, 112, 327-334.
[35] A. Tomkeviciene, J. V. Grazulevicius, D. Volyniuk,V. Jankauskasb, G. Sini, “Structure–properties relationship of carbazole and fluorene hybrid trimers: experimental and theoretical approaches”, Phys. Chem. Chem. Phys. 2014, 16, 1393213942.
[36] F. C. Spano1, C. Silva, “H- and J-Aggregate Behavior in Polymeric Semiconductors”, Annu. Rev. Phys. Chem. 2014, 65, 477-500.
[37] H. Dong, M. Liang, C. Zhang, Y. Wu, Z. Sun, S. Xue, “Twisted Fused-Ring Thiophene Organic Dye-Sensitized Solar Cells”, J. Phys. Chem. C 2016, 120, 22822-22830.
[38] S. Feldt, “Alternative Redox Couples for Dye-Sensitized Solar Cells”, Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1017 2013, ISBN 978-91-554-8595-5.
[39] R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, K. S. Schanze, "Panchromatic Donor−Acceptor−Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications", ACS Appl. Mater. Interfaces 2014, 6, 8715-8722.