| 研究生: |
吳季融 Ji-Rung Wu |
|---|---|
| 論文名稱: |
空氣中有機污染物自動分析技術之開發研究 Atmosphere volatile organic pollutants automatic analyzed system development research |
| 指導教授: |
王家麟
Jia-Lin Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 揮發性有機物 、中孔洞分子篩 、臭氧前驅物 |
| 外文關鍵詞: | VOCs, mesoporous molecular sieves, ozone precusor |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文主要探討不同種類與孔徑的分子篩吸附劑對於空氣中揮發性有機物的選擇性與吸附能力;吸附劑共包含了四種不同的商業化碳分子篩吸附劑與兩種自行合成的矽分子篩吸附劑,製備單一吸附劑吸附管或組合式吸附管,搭配本實驗室自行開發之前濃縮系統,針對揮發性有機物進行量測。利用一已知濃度且包含56個物種分別為C2-C12之混合氣體做為樣品來源,研究各吸附管之吸附能力與選擇性。由於無法找到一吸附劑對於C3-C12物種皆具有良好的捕捉能力,故組合數種吸附劑形成一多重床吸附管,多重床吸附管則對於C3-C12物種皆具有一致的捕捉效率。
此外本研究也測試了兩種自行合成之矽分子篩吸附劑與商業化吸附劑作為比較,所合成之矽分子篩吸附劑分別為MCM-41與MCM-48,其孔洞大小各自為2.5 nm與2.8 nm,而商業化吸附劑孔洞則小於1.5 nm。其結果正如同所預測的,大孔洞的分子篩對分子小於C8-C10範圍的VOCs捕捉能力較差。相對地大孔洞的矽分子篩吸附劑則對大分子的物種有較佳的捕捉能力,大致上對於C8以上的物種,具有優良的捕捉能力。由以上結果可推論分子篩的孔洞大小決定了其吸附能力與選擇性。
本論文的第二部份則是針對台灣中部地區VOCs垂直濃度分佈之結果作討論;過去中部地區常發生季節性高臭氧問題,而高臭氧的來源可能是來自於上風處都會區所排放的VOCs與NOx經過傳輸後在下風處產生高臭氧的問題。量測過程中每一個垂直剖面是由7個繫掛於滯空氣球的Tedlar採樣袋所組成,採樣高度最高可達到距離地面1公里的高空。我們利用長生命期物種與短生命期物種之比值,作為氣團老化的證據。由數個垂直探空的結果中可以發現,VOC的濃度呈現極度不均勻的結果。一般而言靠近地表的VOC呈現較高的濃度且為較新鮮的氣團。而高層的氣團,則呈現VOC經過光化學反應後氣團老化的結果,其老化的現象對應了高臭氧的結果,驗證了高臭氧的來源是來自於上風都會區排放,經過遠距傳輸在下風處產生高臭氧的結果。
Abstract
This study investigated the sorption selectivity of volatile organic compounds by various types of molecular sieve materials of different pores sizes, which consisted of 4 types of commercially available carbon based sorbents as well as two types of self synthesized silicon based mesoporous materials. These sorbents were packed either individually or in combination into a 9cm 1/8” O.D. s.s. tube to form enrichment traps used in a VOC analytical system. A standard gas mixture containing 56 C2-C12 species with known mixing ratios was analyzed by the traps for testing the enrichment efficiency and selectivity for these sorbents. While no single carbon sorbent can performed wide enough range of VOC sorption from C3-C12, the combination of several sorbents to form two multi-beds with one packed with carbosieve SIII, carboxen 1000 for the PLOT column, and the other packed with carbonxen 1000, 1003, and carbotrap, in this order, for the DB-1 column, however provided a uniform sorption efficiency across C3-C12.
We also tested the sorption characteristics of two types of self-synthesized silicon based molecular sieves, which fall into the categories of MCM-41 and MCM-48 with pore sizes of 2.5 nm and 2.8 nm, respectively, significantly larger than those of carbon sorbents with pore size smaller than 1.5 nm in general. As expected, when using silicon molecular sieves poor sorption efficiencies were observed for VOCs smaller than C8-C10 region. Conversely, for molecules larger than C8-C10 region excellent trapping efficiency can be obtained, suggesting sorption selectivity and efficiency is largely controlled by the pore size.
The second part of the thesis discusses the results from a field campaign in an attempt to obtain vertical distributions of VOC concentrations in central Taiwan where seasonal high ozone regularly plagues this area. It was postulated that the transport of VOCs and NOx from urban areas to the downwind rural areas causes maximum ozone formation. As a result, vertical profiles of VOCs mixing ratios were performed in a mountainous downwind area in an attempt to shed light to the transport theory. Each vertical profile was obtained from 7 air samples in Tedlar bags fastened along the string of a balloon elevated up to 1km. We used ratios of VOC pairs of longer lifetime species to short lifetime species to suggest the age of air masses. Based on several vertical measurements it was found that the VOC mixing ratios were highly inhomogeneous vertically and exhibited dramatic layer structure. While the layer near the surface usually showed higher VOC mixing ratios in general, the age of air masses in this elevation was significantly younger than those in the upper layer where aged air mass correlating with elevated O3 suggested long-range transport from upwind VOC source areas.
參考文獻
[1] M. Z. Jacobson, Atmospheric Pollution, Cambridge University Press, London, 85, 2002.
[2].環保署空保處網站,http://www.epa.gov.tw/F/index.htm
[3] Radian Corp. “Control techniques for volatile organic emissions from stationary source” USEPA, EPA-450/2-78-022, 1978.
[4] W. C. Edwards “VOC emissions from major organic chemical plants in Canada” 84th Annual. Meeting, A&WMA, B.C, Columbia, 1991.
[5] J. C. Chow, J. G. Watson, D. H. Lowenthal, R. T. Egami, P. A. Solomon, R. H. Thruillier, K. L. Magliano and A. J. Ranzieri “Spatial and temporal variations of particulate precursor gases and photochemical reaction products during SJVAQS/AUSPEX ozone episodes” Atmos. Environ. 32 (1998) 2835-2844
[6] 江右君,1993 “台北地區空氣中揮發性有機物特性與污染源分析”,台灣大學環工所碩士論文。
[7] 許逸群,2000 “臭氧高濃度區揮發性有機物特徵與排放源關聯性研究”,成功大學環工所博士論文。
[8] A. R. Mackenzie, R. M. Harrison “The Role of biogenic Hydrocarbons in the production of Ozone in Urban plumes in Southeast England” Atmos. Environ. 25A (1991) 351-359
[9] T. B. Ryerson, M. Trainer, J. S. Holloway, D. D. Parrish, L. G. Huey, D. T. Sueper, G. J. Frost, S. G. Donnelly, S. Schauffler, E. L. Atlas, W. C. Kuster, P. D. Goldan, G. Hubler, J. F. Meagher, F. C. Fehsenfeld “Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies” Science 292 (2001) 719-723
[10] 李青勝,1990 “即時氣象資訊應用再空氣品質分析與實驗”,行政院環境保護署。
[11] B. Rappengluck, P. Fabian, P. Kalabokas, L. G. Viras and I. C. Ziomas “Quiasi-continuous measurements of non-methane hydrocarbons (NMHC) in the greater Athens area during MEDCAPHOT-TRACE” Atmos. Environ. 32 (1998) 2103-2121
[12] J. L. McElroy, T. B. Smith “Vertical pollutant distributions and boundary layer structure observed by airborne lidar near the complex Southern California coastline” Atmos. Environ. 20 (1986) 1555-1566
[13] A publication of the AIR NOW homepage of the USEPA : http://www.epa.gov/airnow/health/smog.pdf EPA-452/K-99-001 July, 1999.
[14] R. Atkinson “Gas- phase tropospheric chemistry of organic compounds: a review” Atmos. Environ. 24A (1990) 1-41
[15] T. Lahre “Cancer Risks form air toxic in urban areas” 81st Annual Meeting of APCA, Dallas, Texas, June, 19-24, 1998.
[16] D. A. Levaggi, W. Sia “Gaseous toxics monitoring in the San Francisco Bay Area: a Revies and Assessment of Four years of Data” 84th Annual Meeting of A&WMA, Vancouver, B. C., Columbia, 1991.
[17] L. F. De “Trends in ground level ozone concentrations in the European Union” Environmental Science & Policy 3 (2000) 189-199
[18] K. C. Heidorn, and D. Yap “Asynoptic Climatology for Surface Ozone Concentration in Southern Ontario” Atmos. Environ. 20 (1986) 696-703
[19] 蔡政雄,2001,臭氧前趨物連續監測與臭氧生成之光化學探討,中央大學化學所碩士論文。
[20] “Rethinking the Ozone in Urban and Regional Air Pollution” National Academy od Sciences,Washington D.C. 1991.
[21] W. L. Chameides, F. Fehsenfeld, M. O. Rodgers, C. Cardelino, J. Martinez, D. Parrish, W. Lonneman, D. R. Lawson, R. A. Rasmussen, P. Zimmerman, J. Greenberg, P. Middleton, T. Wang “Ozone precursor relationships in the ambient air” J. Geophy. Res. 97 (1992) 6037-6055
[22] F. M. Bowman, J. H. Seinfeld “Ozone productivity of atmospheric organics” J. Geophy. Res. 99 (1994) 5309-5324
[23] W. P. L. Carter “A detailed mechanism for the gas-phase atmospheric reactions of organic compounds” Atmos. Environ 24A (1996) 481
[24] 美國EPA, PAMS網站http://www.epa.gov/oar/oaqps/pams/
[25] T. Laurila, H. Hakola “Seasonal cycle of C2-C5 hydrocarbons over the Baltic Sea and northern Finland” Atmos. Environ. 30 (1996) 1597-1607
[26] T. F. Dann, D. K. Wang “Ambient air benzene concentrations in Canada (1989-1993) seasonal and day of week variations, trends and source influences” J. Air Waste Manage. Assoc. 45 (1995) 695-702
[27] W. -H. Ding, J. -L. Wang “Spatial concentration profiles of C2-C6 hydrocarbons in the atmosphere of Taipei metropolitan area” Chemosphere 37 (1998) 1187-1195
[28] USEPA “Compendium Method TO-14: Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography”
[29] D. Helmig and J. P. Greenberg “Automated in-situ gas chromatographic-mass spectrometric analysis of ppt level volatile organic trace gases using multistage solid-adsorbent trapping” J. Chromatogr. A 677 (1994) 123-132
[30] USEPA “Compendium Method TO-1: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS)”
[31] USEPA “Compendium Method TO-2: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption Gas Chromatography/Mass Spectrometry (GC/MS)”
[32] M. Harper “Sorbent trapping of volatile organic compounds from air” J. Chromatogr. A 885 (2000) 129-151
[33] USEPA “Compendium Method TO-2: Determination of Volatile OrganicCompounds in Ambient Air Using ActiveSampling Onto Sorbent Tubes”
[34] J. Dewulf, H. Van Langenhove “Chlorinated C1 hydrocarbons and C2 hydrocarbons and monocyclic aromatic-hydrocarbons in marine waters- An overview on fate processes, sampling, analysis and measurements” Water Res. 31 (1997) 1825-1838
[35] E. Brancaleoni, M. Scovaventi, M. Frattoni, R. Mabilia, and P. Ciccioli “Novel family of multi-layer cartridges filled with a new carbon adsorbent for the quantitative determination of volatile organic compounds in the atmosphere” J. Chromatrgr. A 845 (1999) 317-328
[36] C. Monn, M. Hangatner “Passive sampling of aromatic volatile organic compounds in ambient air in Switzerland” Environ. Technol. 17 (1996) p301-307
[37] E. Matisova and S. Skrabakova “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples” J. Chromatogr. A 707 (1995) 145-179
[38] F. Derby Shire, M. Jagtoyen, B. McEnaney, A. Sethuraman, J. M. Stencel and M. W. Thwaites “The production of activated carbons form coals by chemical activation” Abstracts of Papers of the American Chemical Socienty 202 (1991) 48
[39] C. Pierce, R. N. Smith, J. W. Wiley and H. Cordes “Adsorption of water by carbon” J. Am. Chem. Soc. 73 (1951) 4551
[40] E. Matisova and S. Skrabakova “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples” J. Chromatogr. A 707 (1995) p145-179
[41] F. Brunner, G. Crescentini, L. Lattanzi and F. Mangani “Capillary gas-chromatography with graphitized carbon black” J. Chormatography 517 (1990) 123-129
[42] W. Engewald, J. Porschmann and T. Welsh “Graphitized thermal carbon-black as a shape selective stationary phase in GC” Chromatographia 30 (1990) 537-542
[43] W. R. Betz and W. R. Supina “Determination of the gas chromatographic performance-characteristics of several graphitized carbon blacks” J. Chromatography 471 (1989) 105-112
[44] N. V. Kovaleva and K. D. Scherbakova “Carbon adsorbents in gas adsorption chromatography.” J. Chromatography 520 (1990) 55-68
[45] K. K. Unger “Porous carbon packings for liquid chromatography” Anal. Chem. 55 (1983) 361A
[46] M. T. Gilbert, J. H. Knox and B. Kaur “Porous Glassy-Carbon, a new columns packing material for gas-chromatography and High-Performance Liquid-Chromatography” Chromatographia 16 (1982) 138-148
[47] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Hanigen “ Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids” J. Am. Chem. Soc. 104 (1982) 1146-1147
[48] M. E. Davis, S. Saldarriaga, C. Montes, J. Graces and C. Crowder “A molecular sieves with eighteen-membered rings” Nature 311 (1988) 698-699
[49] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism” Nature 359 (1992) 710-712
[50] N. K. Raman, M. T. Anderson, C. J. Brinker “Template-based approaches to the preparation of amorphous, nanoporous silicas” Chem. Mater. 8 (1996) 1682-1701
[51] C. T. Kresge, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, J. S. Beck, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker “M41S-A new family of mesoporous molecular-sieves prepared with liquid-crystall templates” Studies in Surface Science and Catalysis 192 (1995) 11-19
[52] E. Matisova, S. Skrabakova “Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples” J. of chromatogr. A 707 (1995) 145-179
[53] H. Zhao, K. L. Nagy, J. S. Waples and G. F. Vance “Surfactant-templated mesoporous silicate materials as sorbents for organic pollutants in water” Environ. Sci. Technol. 34 (2000) 4822-4827
[54] J. M. Sanchez and R. Sacks “On-line multibed sorption trap and injector for the GC analysis of organic vapors in large-volume air sample” Anal. Chem. 75 (2003) 978-985
[55] Hill, H. H. and Mcminn, D. G. Detectors for Capillary chromatography, p1-21. John Wiley & Sons Inc. (1992)
[56] Sternberg, J. C., Gallaway, W. S. and Jones, T.L. Gas chromatography, p231-267. Academic Press, New York, (1962)
[57] 楊廣苓,1997,熱脫附/氣相層析儀法分析環境中微量氣態碳氫化合物方法評估與環境實測,清華大學原科所博士論文。
[58] 周順盈,1999,非甲烷碳氫化合物及鹵碳化物自動化分析系統之建立及改進,中央大學化學所碩士論文。
[59] J. P. Greenberg, A. Guenther, P. Zimmerman, W. Baugh, C. Geron, K. Davis, D. Helmig and L. F. Klinger “Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer” Atmos. Environ. 33 (1999) 855-867
[60] K. M. Beswick, T. W. Simpson, D. Fowler, T. W. Choularton, M. W. Gallagher, K. J. Gargreaves, M. A. Sutton and A. Kaye “Methane emissions on large scales” Atmos. Environ. 33 (1998) 3283-3291
[61] K. Sahashi, T. Hieda and E. Yamashita “Nitrogen-oxide layer over the urban heat island in OKAYAMA City” Atmos. Environ. 30 (1996) 531-535
[62] C.-L. Chen, B.-J. Tsuang, C.-Y. Tu, W.-L. Cheng, M.-D. Lin “Wintertime vertical profiles of air pollutants over a suburban area in central Taiwan” Atmos. Environ. 36 (2002) 2049-2059
[63] 蔡政雄,2001,臭氧前趨物連續監測與臭氧生成之光化學探討,中央大學化學所碩士論文。
[64] 環保署空保處網站,http://www.epa.gov.tw/F/index.htm
[65] J. P. Greenberg, P. R. Zimmerman “Nonmethane hydrocarbons in remote tropical, continental and marine atmospheres” J. Geophy. Res. 89 (1984) 4767-4778
[66] J. P. Greenberg, P. R. Zimmerman, B. E. Taylor, G. M. Silver, R. Fall “Sub-parts per billion detection of isoprene using a reduction gas detector with a portable gas chromatograph” Atmos. Environ. 27A(16) (1993) 2689-2692
[67] A. Guenther, W. Baugh, K. Davis, G. Hampton, P. Harley, L. Klinger, L. Vierling, P. Zimmerman, C. Baldocchi, C. Geron, T. Pierce “Isoprene fluxes measure by enclosure, relaxed eddy accumulation, surface layer gradient, Mixer layer gradient, and mixer layer gradient, and mixer layer mass balance techniques” J. Geophy. Res. 101(D13) (1996) 18555-18567
[68] A. Guenther, A. B.Guenther, P. R. Zimmerman, P. C. Harley, R. K. Monson, R. Fall “Isoprene and monoterpene emission variability: model evaluations and sensitivity analyses” J. Geophy. Res. 98(D7) (1993) 12909-12617
[69] 丁建忠,2002,自行架設光化學測站與商業化儀器平行比對及所得資料初步分析,中央大學化學所碩士論文。