跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳虹君
Hung-Chun Chen
論文名稱: 固定床管柱實驗探討淨水污泥吸附含磷廢水之研究
Fix-bed column studies on the adsorption of phosphate containing wastewater by water treatment plant sludge
指導教授: 曾迪華
Dyi-Hwa Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 131
中文關鍵詞: 固定床管柱淨水污泥吸附含磷廢水床高-操作時間模式
外文關鍵詞: Fix-bed column, water treatment plant sludge, adsorption, phosphate containing wastewater, BDST model
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以固定床管柱實驗操作方式,並利用淨水污泥為吸附材料,探討其去除水中磷酸鹽的可行性。實驗設計以平鎮淨水場之淨水污泥為吸附劑,並分別以人工配置含磷水樣及實際光電業含磷廢水為吸附質,探討吸附床高、初始磷濃度、流量及水樣pH值等不同操作因子,對吸附成效的影響,並驗證應用於實際光電業含磷廢水的可行性。此外本研究藉由床高-操作時間模式,探討吸附之動力學。至於吸附飽和後之淨水污泥,經SEM-EDS分析其特性,以確認污泥表面磷酸鹽的增量,有利於將污泥進一步作為土壤改良劑之再利用的目標。
    實驗結果顯示,當增加吸附床高、減少初始磷濃度或進流流量時,管柱達貫穿濃度的操作時間可越長。由於本研究之淨水污泥的等電位點pH為2.82,故實驗結果發現,原水在pH = 2.5時之貫穿容量為其他pH值(pH = 3.5、4.0、7.0及9.0)之十倍至三十倍的變化範圍。在低pH時之貫穿容量明顯的提升,其主要機制是吸附劑表面的正電荷吸引水中負電荷磷酸根離子,並藉由配位基置換來吸附水溶液中的磷酸根。此結果也驗證淨水污泥對吸附光電製程之低pH高含磷濃度的鋁蝕刻清洗廢水,具有應用價值,且其BDST模式的吸附容量(N0)和速率常數(k)分別為409.20 mg/L 和0.002678 L/mg•min 。此外SEM-EDS之分析結果顯示,吸附飽和後之淨水污泥的表面結構,明顯與吸附前不同,且污泥表面磷成分百分比隨著貫穿吸附容量的增加而增加。


    The purpose of this study was to investigate the feasibility of adsorption of phosphate from wastewater by water treatment plant sludge (WTPS) as the material for the adsorption operation in a fixed bed column system. The experimental design employed sludge obtained from Ping-Jan water treatment plant as the adsorbent and the synthetic wastewater prepared in the Lab as well as the real wastewaters sampled from photoelectric industry containing phosphate were used as the adsorbate in this study. The effects of the various operation factors, included bed depth, initial phosphate concentration, flow rate and pH, on the performance of the column tests were investigated. Also, the feasibility of applying this technology to treat the real photoelectric wastewater containing phosphate was evaluated. In addition, the adsorption kinetic study was analyzed by the bed depth/service time (BDST) model. Meanwhile, as the sludge was exhausted by phosphate, the SEM-EDS analyses were carried to observe the surface change of the sludge structure and quantified the amount of phosphate adsorbed. The ultimate goal of this study is expected to further reutilize the exhausted sludge as soil conditioner.
    The experimental results revealed that the increase of bed depth and the decrease of influent phosphate concentration and flow rate, the column breakthrough time were increased. Due to the pHzpc of the sludge was 2.82, the experimental results found that the breakthrough capacity of raw wastewater at pH = 2.5 was 10 to 30 times higher than those at the other pH (pH = 3.5, 4.0, 7.0 and 9.0). The fact of this phenomenon that the breakthrough capacity obviously increased at low pH was primarily due to the positive charge at the sludge particle surface adsorb the negative charge of phosphate ion in solution, and also by mean of the ligand-exchange mechanism. The results of pH effect in this study verified that WTPS is a well material with application value for the adsorption of low pH and high concentration of phosphate in Al-etching rinse wastewater from photoelectric industry. Moreover, the BDST model reveled that the adsorption capacity (N0) and adsorption rate constant (k) were 409.20 mg/L and 0.002678 L/mg•min, respectively, for Al-etching rinse wastewater. In addition, the results of SEM-EDS analysis showed the surface structure of sludge was significantly different before and after adsorption operation. The percentage of phosphorus composition on the surface of exhausted sludge also increased with the increase of breakthrough adsorption capacity.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 磷的重要性 4 2-1-1 磷化學 4 2-1-2 環境中的磷 6 2-1-3 磷的危害性及水質標準 8 2-1-4 光電產業廢水組成特性-以TFT-LCD 為例 10 2-2 去除水中磷之原理與技術 15 2-2-1 化學沉澱法 15 2-2-2 生物處理法 16 2-2-3 薄膜過濾法 17 2-2-4 吸附法 17 2-3 吸附基礎理論 31 2-3-1 物理/化學吸附 31 2-3-2 特定/非特定吸附作用 32 2-3-3 BDST 模式 33 第三章 研究方法、材料與設備 35 3-1 研究架構 35 3-2 研究材料與藥品 37 3-2-1 研究之材料 37 3-2-2 實驗之藥品 39 3-3 實驗設備與分析儀器 40 3-3-1 主要實驗設備 40 3-3-2 主要分析儀器 41 3-4 固定床管柱實驗操作 42 3-4-1 固定床管柱實驗設計 42 3-4-2 固定床管柱實驗計算 47 3-5 分析項目及分析方法 48 3-5-1 淨水污泥基本特性分析 48 3-5-2 水質分析 50 第四章 結果與討論 51 4-1 淨水污泥之特性分析 51 4-1-1 淨水污泥的物理特性 52 4-1-2 淨水污泥的化學特性 53 4-2 人工配製含磷水樣於固定床管柱操作實驗 58 4-2-1 不同操作條件對人工配製含磷水樣吸附成效之影響 58 4-2-2 BDST 模式 72 4-3 光電業含磷廢水於固定床管柱操作實驗 76 4-3-1 不同操作條件對光電業含磷廢水吸附成效之影響 76 4-3-2 BDST 模式 89 4-3-3 人工配製含磷水樣及光電業含磷廢水之磷酸鹽吸附差異 94 4-3-4 綜合評估 98 4-4 吸附後之淨水污泥特性變化 99 4-4-1 淨水污泥的物理特性 99 4-4-2 淨水污泥的化學特性 102 第五章 結論與建議 106 5-1 結論 106 5-2 建議 109 參考文獻 110

    1. Ahmaruzzaman, M., “Industrial wastes as low-cost potential adsorbents for the
    treatment of wastewater laden with heavy metals”, Advances in Colloid
    and Interface Science, vol. 166, pp. 36-59,(2011).
    2. Bohn, H. L., B. L. McNeal, and G. A. O'Connor, “Soil chemistry”, Plant
    Nutrition and Soil Science, vol. 149, pp. 357,(1986).
    3. Chubar, N. I., V. A. Kanibolotskyy, V. V. Strelko, G. G. Gallios, V. F.
    Samanidou, T. O. Shaposhnikova, V. G. Milgrandt, and I. Z. Zhuravlev,
    “Adsorption of phosphate ions on novel inorganic ion exchangers”,
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.
    255, pp. 55-63,(2005).
    4. De-Bashan, L. E., and Y. Bashan, “Recent advances in removing phosphorus
    from wastewater and its future use as fertilizer ”, Water Res, vol. 38, pp.
    4222-4246,(2004).
    5. Eugenia, V. J., “Phosphorus in environmental technologies principles and
    applications”, International Water Association, pp. 292-306,(2004).
    6. Futalan, C. M., C. C. Kan, M. L. Dalida, C. Pascua, and M. W. Wan,
    “Fixed-bed column studies on the removal of copper using chitosan
    immobilized on bentonite”, Carbohydrate Polymers, vol. 83, pp.
    697-704,(2011).
    7. Hutchins, R. A., “New method simplified design of activated carbon system”,
    Chemical Engineering Journal, vol. 80, pp. 133-138,(1973).
    8. Ippolito, J. A., K. A. Barbarick, and H. A. Elliott, “Drinking water treatment
    residuals: a review of recent uses”, Journal of Environmental Quality, vol.
    40, pp. 1-12,(2011).
    9. Irawan, C., J. C. Liu, and C. C. Wu, “Removal of boron using aluminum-based
    water treatment residuals (Al-WTRs)”, Desalination, vol. 276, pp.
    322-327,(2011).
    10. Johansson, L., “Blast furnace slag as phosphorus sorbents — column studies”,
    The Science of the Total Environment, vol. 229, pp. 89-97,(1999).
    11. Le, Z., X. Li, and J. Liu, “Adsorptive removal of phosphate from aqueous
    solutions using iron oxide tailings”, Water Res, vol. 38, pp.
    1318-1326,(2004).
    12. Nagar, R., D. Sarkar, K. C. Makris, and R. Dattad, “Effect of solution
    chemistry on arsenic sorption by Fe- and Al-based drinking-water
    treatment residuals”, Chemosphere, vol. 78, pp. 1028-1035,(2010).
    13. Namasivayam, C., and K. Prathap, “Recycling Fe(III)/Cr(III) hydroxide, an
    industrial solid waste for the removal of phosphate from water”, Hazardous
    Materials, vol. 123, pp. 127-134,(2005).
    14. Olgun, A., N. Atar, and S. Wang, “Batch and column studies of phosphate and
    nitrate adsorption on waste solids containing boron impurity”, Chemical
    Engineering Journal, vol. 222, pp. 108-119,(2013).
    15. Pitman, A. R., S. L. Deacon, and W. V. Alexander, “The thickening and
    treatment of sewage sludges to minimize phosphorus release”, Water Res,
    vol. 25, pp. 1285-1294,(1991).
    16. Sag, Y., and Y. Aktay, “Application of equilibrium and mass transfer models to
    dynamic removal of Cr(VI) ions by chitin in packed column reactor”,
    Process Biochemistry, vol. 36, pp. 1187-1197,(2001).
    17. Saito, T., D. Brdjanovic, and M. C. Van Loosdrecht, “Effect of nitrite on
    phosphate uptake by phosphate accumulating organisms”, Water Res, vol.
    38, pp. 3760-3768,(2004).
    18. Sawyer, C. N., P. L. McCarty, and G. F. Parkin, “Chemistry for environmental
    engineering” McGraw-Hill Companies (1994).
    19. Sibrell, P. L., G. A. Montgomery, K. L. Ritenour, and T. W. Tucker, “Removal
    of phosphorus from agricultural wastewaters using adsorption media
    prepared from acid mine drainage sludge”, Water Res, vol. 43, pp.
    2240-2250,(2009).
    20. Siswoyo, E., Y. Mihara, and S. Tanaka, “Determination of key components
    and adsorption capacity of a low cost adsorbent based on sludge of
    drinking water treatment plant to adsorb cadmium ion in water”, Applied
    Clay Science, vol. 97-98, pp. 146-152,(2014).
    21. Song, X., Y. Pan, Q. Wu, Z. Cheng, and W. Ma, “Phosphate removal from
    aqueous solutions by adsorption using ferric sludge”, Desalination, vol.
    280, pp. 384-390,(2011).
    22. Stumm, W., and J. J. Morgan, “Aquatic chemistry”, Wiley Interscience,(1981).
    23. Sun, X. F., T. Imai, M. Sekine, T. Higuchi, K. Yamamoto, A. Kanno, and S.
    Nakazono, “Adsorption of phosphate using calcined Mg3–Fe layered
    double hydroxides in a fixed-bed column study”, Journal of Industrial and
    Engineering Chemistry, vol. 20, pp. 3623-3630,(2014).
    24. Tanada, S., M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki,
    and T. Tamura, “Removal of phosphate by aluminum oxide hydroxide”,
    Colloid and Interface Science, vol. 257, pp. 135-140,(2003).
    25. Tor, A., N. Danaoglu, G. Arslan, and Y. Cengeloglu, “Removal of fluoride
    from water by using granular red mud: Batch and column studies”, J
    Hazard Mater, vol. 164, pp. 271-278,(2009).
    26. Unuabonah, E. I., M. I. El-Khaiary, B. I. Olu-Owolabi, and K. O. Adebowaled,
    “Predicting the dynamics and performance of a polymer- clay based composite in a fixed bed system for the removal of lead (II) ion”, Chemical
    Engineering Research and Design, vol. 90, pp. 1105-1115,(2012).
    27. Vijayaraghavan, K., J. Jegan, K. Palanivelu, and M. Velan, “Removal of
    nickel(II) ions from aqueous solution using crab shell particles in a packed
    bed up-flow column”, J Hazard Mater, vol. 113, pp. 223-230,(2004).
    28. Vinitnantharat, S., S. Kositchaiyong, and S. Chiarakorn, “Removal of fluoride
    in aqueous solution by adsorption on acid activated water treatment
    sludge”, Applied Surface Science, vol. 256, pp. 5458-5462,(2010).
    29. Walker, G. M., and L. R. Weatherley, “COD removal from textile industry
    effluent: pilot plant studies”, Chemical Engineering Journal, vol. 84, pp.
    125-131,(2001).
    30. Wang, W. D., H. W. Yang, H. Z. Zhao, and Z. P. Jiang, “Transfer and transport
    of aluminum in filtration unit”, Journal of Environmental Sciences, vol. 19,
    pp. 897-901,(2007).
    31. Xu, X., B. Gao, W. Wang, Q. Yue, Y. Wang, and S. Ni, “Adsorption of
    phosphate from aqueous solutions onto modified wheat residue:
    characteristics, kinetic and column studies”, Colloids and Surfaces B:
    Biointerfaces, vol. 70, pp. 46-52,(2009).
    32. Yan, Y., X. Sun, F. Ma, J. Li, J. Shen, W. Han, X. Liu, and L. Wang, “Removal
    of phosphate from etching wastewater by calcined alkaline residue: Batch
    and column studies”, Journal of the Taiwan Institute of Chemical Engineers,
    vol. 45, pp. 1709-1716,(2014).
    33. Yang, Y., D. Tomlinson, S. Kennedy, and Y. Q. Zhao, “Dewatered alum sludge:
    a potential adsorbent for phosphorus removal”, Water Science Technology,
    vol. 54, pp. 207-213,(2006).
    34. Yang, Z., B. Gao, W. Xu, B. Cao, and Q. Yue, “Effect of OH-/Al3+ and Si/Al molar ratios on the coagulation performance and residual Al speciation
    during surface water treatment with poly-aluminum-silicate-chloride
    (PASiC)”, J Hazard Mater, vol. 189, pp. 203-210,(2011).
    35. Zong, E., D. Wei, H. Wan, S. Zheng, Z. Xu, and D. Zhu, “Adsorptive removal
    of phosphate ions from aqueous solution using zirconia-functionalized
    graphite oxide”, Chemical Engineering Journal, vol. 221, pp.
    193-203,(2013).
    36. Zulfadhly, Z., M. D. Mashitah, and S. Bhatia, “Heavy metals removal in
    fixed-bed column by the macro fungus Pycnoporus sanguineus”,
    Environmental Pollution, vol. 112, pp. 463-470,(2001).
    37. 王寶貞,「水污染控制工程」, 科技圖書,(1994)。
    38. 陳曉鳴,「以蒙脫土吸附磷酸鹽之研究」,資源工程學系碩博士班,國立
    成功大學,博士,臺南,(2011)。
    39. 吳東男,「活性碳吸附水中磷之研究」,化學工程系,國立臺灣科技大學,
    碩士,臺北,(2008)。
    40. 杜建德,「TFT-LCD 環保運作概述」,(2005)。
    41. 林志鴻,「淨水污泥再利用於水泥生料之研究」,環境工程研究所,國立
    中央大學,碩士,中壢,(2010)。
    42. 林明華, 張維新,楊千,「TFT-LCD 產業概況」,產業論壇,(2001)。
    43. 林健三,「環境工程概論」,,鼎茂圖書,台北,(2005)。
    44. 林敬智,「下水污泥灰渣應用於銅離子去除之初步探討」,環境工程研究
    所,國立中央大學,碩士,中壢,(2001)。
    45. 林聖寰,「淨水污泥取代黏土作為水泥生料對卜特蘭水泥影響之研究」,
    環境工程所,國立交通大學,碩士,新竹,(2003)。
    46. 林龔樑,「砷化鎵磊晶-以MOCVD 之製程探討其危害與預防」,工業安
    全衛生月刊,(2002)。
    47. 洪珮瑜,「淨水污泥及其燒結體對銅、鉛離子之吸附反應」,環境工程研
    究所,國立台灣大學,碩士,台北,(2000)。
    48. 張進祥,「纖鐵礦及水合鐵礦吸附水中磷酸鹽之研究」,環境工程與科學
    系,嘉南藥理科技大學,碩士,台南,(2009)。
    49. 張鈞維,「以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究」,環
    境工程學系,國立成功大學,碩士,臺南,(2006)。
    50. 陳宜晶,「利用添加劑提昇淨水污泥燒結之材料品質研究」,環境工程與
    科學所,逢甲大學,碩士,臺中,(2003)。
    51. 陳虹君,張誠祐,劉宏哲,「水中殘餘鋁之去除」,環境工程與科學學系,
    逢甲大學,專題論文,臺中,(2012)。
    52. 曾浩然,「兩種吸附劑去除水中磷酸鹽之研究」,環境工程研究所,國立
    成功大學,碩士,台南,(2009)。
    53. 黃志彬,「高科技工業廢水處理操作效能提昇研析」,第一屆高科技工業
    環保技術及安全衛生學術及實務研討會論文集,(2002)。
    54. 黃昭貴,「含磷污泥與鋁鹽污泥之共調理脫水」,化學工程研究所,台灣
    科技大學,碩士,台北,(2005)。
    55. 黃慧文,「以鐵錳污泥及鋁鹽污泥利用連續流管柱去除砷之研究」,環境
    工程與科學學系,逢甲大學,碩士,臺中,(2013)。
    56. 廖明聰,「以淨水污泥做為綠美化用地之土壤改良劑」,環境工程與科學
    系,屏東科技大學,碩士,屏東,(2005)。
    57. 廖威智,「薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收
    再利用之研究」,環境工程研究所,國立交通大學,碩士,新竹,(2003)。
    58. 劉又瑞,「淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究」,環境
    工程研究所,國立交通大學,碩士,新竹,(2002)。
    59. 蔡宗佑,「以鋁鹽污泥去除水中砷之研究」,環境工程與科學所,逢甲大
    學,碩士,臺中,(2012)。
    60. 蕭宇廷,「淨水污泥餅作為吸附材料處理含磷廢水之研究」,環境工程研
    究所,國立中央大學,碩士,中壢,(2012)。
    61. 賴家煒,「牡蠣殼之再利用研究」,應用科學系碩士班,國立新竹教育大
    學,碩士,新竹,(2010)。
    62. 龍柏華,「濕蝕刻製程介紹暨機台原理簡介」,光連:光電產業與技術情
    報月刊(48 期),(2003)。
    63. 環保署,「高科技產業廢水水質特性分析及管制標準探討計畫」,行政院
    環保署,(2007)。
    64. 鍾瑞嬰,「磷酸根及重金屬離子在針鐵礦上之吸附平衡」,化學工程學系,
    元智大學,碩士,中壢,(2003)。
    65. 顏笠安,「淨水場混凝污泥質量特性與脫水泥餅再利用初步評估」,環境
    工程研究所,國立中央大學,碩士,中壢,(2009)。
    66. 顏慧茹,「淨水污泥燒結製備輕質化材料之可行性研究」,環境工程與科
    學學系,逢甲大學,碩士,臺中,(2010)。
    67. 魏名軍,「以鐵錳污泥除砷機制之探討」,環境科學與學學系,逢甲大學,
    碩士,臺中,(2011)。

    QR CODE
    :::