| 研究生: |
李博文 Bo-Wen Li |
|---|---|
| 論文名稱: |
藥物最低有效劑量之無母數鑑別 Nonparametric Identification of the minimm effective dose of drugs |
| 指導教授: |
陳玉英
Yuh-Ing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 最低有效劑量 |
| 外文關鍵詞: | minimum effective dose |
| 相關次數: | 點閱:2 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討在一元配置 (one-way layout) 設計之下的劑量反應研究中,鑑別藥物最低有效劑量(minimum effective dose,簡記MED),此處的最低有效劑量為相對於零劑量組或標準組,具有一定藥效的劑量水準。本文考慮劑量反應為常態分布或是非常態分布,並且各劑量組分散度不盡相同時,在設定的藥效門檻值之下,提出一種修正的Mann-Whitney (1947) 統計量,建立封閉性的多重檢定方法進行藥物最低有效劑量之無母數鑑別。然後利用蒙地卡羅 (Monte Carlo) 方法在各種可能的劑量反應之下比較本文所提檢定方法與其他方法之實驗誤差率 (experimentwise error rate,簡記EWE)、族誤差率(familywise error rate,簡記FWE)及檢定力 (power) 之相對表現。最後進行實例分析說明所提方法之應用。
This paper discusses in one-way layout dosage response research, how to identify minimun effective dose, denote it bu MED. Corresponding to the dose response with normal or nonnormal distribution, maybe in different scale parameter, and with threshold set-up, we propose a modified Mann-Whitney statistics, set up a close and step-down multiple comaprison to identify nonparamerically MED.
1. Birnbaun, Z.W. and Klose, O.M. (1957). Bounds for the variance of the Mann-Whitney statistic. Annals of Mathematical Statistics 28, 933-945.
2. Chen, Y.I. and Wolfe, D.A. (1990). Modifications of the Mack-Wolfe umbrella tests for a generalized Behrens-Fisher problem. The Canadian Journal of Statistics 18, 245-253.
3. Chen, Y.I. (1999). Nonparametric identification of the minimum effective dose. Biometrics 55, 1236-1240.
4. Fligner, M.A. and Policello, G.E. II (1981). Robust rank procedures for the Behrens-Fisher problem. Journal of the American Statistical Association 76, 162-168.
5. Halperin, M., Gilbert, P.R. and Lachin, J.M. (1987). Distribution-free confidence interval for Pr(X1<X2). Biometrics 46, 71-80.
6. Jan, S.L. (2004). Nonparametric equivalents of contrasts for identifying the minimum effective dose. To appear in Computational Statistics and Simulations.
7. Jason C. Hsu and Roger L. Berger, (1999). Stepwise confidence internals without multiplicity adjustment for dose-response and toxicity studies. Journal of the American Statistical Association 94, 468-482.
8. Mann, H.B. and Whitney, D.R. (1947). On a test whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 50-60.
9. Marcus, R., Peritz, E. and Gabriel, K.R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63, 655-660.
10. Mee, R.W. (1990). Confidence intervals for the probabilities and tolerance regions based on a generalization of the Mann-Whitney statistic. Journal of the American Statistical Association 85, 793-799.
11. Ruberg, S.L. (1989). Contrasts for identifying the minimum effective dose. Journal of the American Statistical Association 84, 816-822.
12. Tamhane, A.C. Hochberg, Y. and Dunnett, C.W. (1996). Multiple test procedures for dose finding. Biometrics 52, 21-37.
13. Tamhane, A.C. and Logan, B.R. (2002). Multiple test procedures for identifying the minimum effective and maximum safe doses. Journal of the American Statistical Association 97, 293-301.
14. Westfall, P.H., Tobias, R.D., Wolfinger, R.D. and Hochberg, Y. (1999). Multiple comparisons and multiple tests using the SAS system, Cary, NC:SAS Institute Inc. .
15. 李真毓. (2003). 藥物最低有效劑量之穩健鑑別. 國立中央大學統
計研究所碩士論文.