| 研究生: |
吳勇蒼 Yung-tsang Wu |
|---|---|
| 論文名稱: |
分離式二氧化鈦奈米管在染料敏化太陽能電池之運用 Fabrication of Separated TiO2 Nanotubes and Application of Dye-Sensitized Solar Cell |
| 指導教授: |
陳昇暉
Sheng-hui Chen 張瑞芬 Jui-fen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 染料敏化太陽能電池 、奈米管 、二氧化鈦 、陽極氧化鋁 、原子層沉積 |
| 外文關鍵詞: | dye-sensitized solar cell (DSSC), nanotube, TiO2, anodic aluminum oxide (AAO), atomic layer deposition (ALD) |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今主流的染料敏化太陽能電池(Dye-sensitized Solar Cell, DSSC)工作電極為奈米顆粒(TiO2 nanoparticles, TNP),但由於奈米顆粒的介面使電子具非單一路徑傳輸並且增加其復合機率。故本研究以陽極氧化鋁(Anodic Aluminum Oxide, AAO)方式製作出奈米孔洞模板,再利用原子層沉積(Atomic Layer Deposition, ALD)技術、高密度電漿蝕刻(High Density Plasma Etch, HDP)及化學濕蝕刻方式製作分離式二氧化鈦奈米管(TiO2 nanotubes, TNT),作為染料敏化太陽能電池的工作電極,使電子具單一性方向傳遞並減少介面間缺陷的復合機率,提升光電轉換效率(Power Conversion Efficiency, PCE)。
而以二次陽極氧化鋁方式可製作出規則性及周期性較好且真圓度大於0.8的奈米管,且在不同基板可製作出不同晶相之二氧化鈦奈米管,最後再浸泡六甲基二矽氮烷(Hexmethyldisilane, HMDS)處理,可使分離式二氧化鈦奈米管在乾燥的過程中不會因內聚力倒塌並形成區塊的破碎。本研究製作的分離式二氧化鈦奈米管管壁厚度為20 nm,平均週期為93.5 nm ~ 202.5 nm,管長300 nm ~ 5.1 μm。而光電轉換效率高於奈米顆粒工作電極,可達1.432%。
TiO2 nanoparticle (TNP) is one of the most popular materials to be the working electrode for dye-sensitized solar cells (DSSCs). However, the carriers are recombined frequently when they propagate to the interface of the TNP. In other word, this is one of the significant issues to decrease the power conversion efficiency (PCE) of a DSSC. In this study, we proposed a TiO2 nanotubes (TNT) as the working electrode for the DSSC. The TNT was fabricated by using atomic layer deposition (ALD) technique on an anodic aluminum oxide (AAO) template. Then we used high density plasma (HDP) etching and wet etching to remove the AAO template. The TNT can help the carriers to propagate in a single-path which can decrease the carrier recombination.
We fabricated the TNTs with better regularity and circularity more than 0.8 by using 2-step AAO method. And the TNTs were fabricated with different crystalline structures on the different substrates. Then, we immersed the TNTs in Hexmethyldisilane (HMDS) to prevent the TNTs to be broken by cohesion. In our research, the thickness of the TNT is 20 nm when period is in the range from 93.5 nm to 202.5 nm. The length of TNT was varied from 300 nm to 5.1 μm. Finally, we demonstrate a DSSC with TNT electrode is better than the DSSC with TNP electrode in PCE is 1.432%.
[1] L. L. Kazmerski, National Renewable Energy Laboratory (NREL), Golden, CO (2013).
[2] S. Gubbala, V. Chakrapani, V. Kumar, and M. K. Sunkara, "Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires," Advanced Functional Materials, 18, 2411-2418, (2008).
[3] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, and S. Yanagida, "Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes," Journal of Materials Chemistry, 12, 723-728, (2002).
[4] T. Sugimoto, X. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method," Journal of Colloid and Interface Science, 259, 53-61, (2003).
[5] Y. Lin, J. Lin, P. Liu, Mohammed J. Meziani, Lawrence F. Allard, and Y. P. Sun, "Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension," Journal of the American Chemical Society, 124, 11514-11518, (2002).
[6] D. Xu, Z. Miao, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, "Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires," Nano Letters, 2, 717-720, (2002).
[7] G. S. Wu, Y. Lin, X. Y. Yuan, T. Xie and L. D. Zhang, "Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes," Journal of physics: Condensed Matter, 15, 2917-2922, (2003).
[8] G. H. Li, Y. X. Zhang, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, "Hydrothermal synthesis and photoluminescence of TiO2 nanowires," Chemical Physics Letters, 365, 300-304, (2002).
[9] B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, et al., "Field-emission properties of TiO2 nanowire arrays," Journal of Physics D: Applied Physics, 38, 1152-1155, (2005).
[10] Eray S. Aydil, B. Liu, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cell," Journal of the American Chemical Society, 131, 3985-3990, (2009).
[11] X. Q. Gu, Y. L. Zhao, and Y. H. Qiang, "Influence of annealing temperature on performance of dye-sensitized TiO2 nanorod solar cells," Journal of Materials Science: Materials in Electronics, 23, 1373-1377, (2011).
[12] A. Kornowski, P. Davide Cozzoli, and H. Weller, "Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods," Journal of the American Chemical Society, 125, 14539-14548, (2003).
[13] J. J. Wu, C. C. Yu, "Aligned TiO2 Nanorods and Nanowalls," The journal of physical chemistry. B 108, 3377-3379, (2004).
[14] H. W. Chung, C. C. Chen, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung, and W. G. Diau, "Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells," Journal of Physical Chemistry C, 112, 19151-19157, (2008).
[15] M. Hiramatsu, T. Kasuga, A. Hoson, T. Sekino, and K. Niihara, "Formation of Titanium Oxide Nanotube," Langmuir, 14, 3160-3163, (1998).
[16] L. K. Tan, M. K. Kumar, W. W. An, and H. Gao, "Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications," ACS Appl Mater Interfaces, 2, 498-503, Feb (2010).
[17] D. Gong, O. K. Varghese, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Grimes, "Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure," Advanced materials, 15, 624-627, (2003).
[18] C. Jeon, S. Lee, and Y. Park, "Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor," Chemistry of materials, 16, 4292-4295, (2004).
[19] J. M. Wu, H. C. Shih, and W. T. Wu, "Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation," Chemical Physics Letters, 413, 490-494, (2005).
[20] F. Müller, A. P. Li, A. Birner, K. Nielsch, and U. Gösele, "Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by self-organization in Anodic Alumina," Applied Physics, 84, 6023-6026, (1998).
[21] L. Z. Feiyue. Li, and Robert M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chem. Mater., 10, 2470-2480, (1998).
[22] G. E. Thompson, "Porous anodic alumina fabrication, characterization and applications," Thin Solid Films, 297, 192-201, (1997).
[23] E. Putzeiko, A. Terenin, and I. Akimov, "Energy transfer in systems of connected organic molecules," Discuss. Faraday Soc., 27, 83-93, (1959).
[24] M. Matsumura, H. Tsubomura, Y. Nomura, T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, 261, 402-403, (1976).
[25] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, 353, 737-740, (1991).
[26] A. Kay, M. K. Nazeeruddin, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, "Conversion of Light to Electricity by cis-X2Bis 2,2'-bipyridyl-4,4'-dicarboxylate)rutheniumⅡ Charge- Transfer Sensitizers(X=C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes," J. Am. Chem. Soc., 115, 6382-6390, (1993).
[27] D. L. U. Bach, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, 395, 583-585, (1998).
[28] P. Nazeeruddin, K. Mohammad, R. Thierry, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," J. Am. Chem. Soc., 123, 1613-1624, (2001).
[29] J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, 499, 316-319, Jul 18 (2013).
[30] L. M. Peter, "The Grätzel Cell: Where Next?," The Journal of Physical Chemistry Letters, 2, 1861-1867, (2011).
[31] M. Grätzel, "Photoelectrochemical cells," Nature, 414, 338-344, (2001).
[32] M. A. Jalebi, A. K. Chandiran, Mohammad K. Nazeeruddin, and M. Grätzel, "Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells," ACS Nano, 8, 2261-2268, (2014).
[33] M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44, 6841-6851, (2005).
[34] G. J. Meyer, "Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers," J. Chem. Educ., 74, 652-656, (1997).
[35] S. F. Arie Zaban, and Brian A. Gregg, "Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface," J. Phys. Chem. B, 102, 452-460, (1998).
[36] J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, "Importance of the relationship between surface phases and photocatalytic activity of TiO2," Angew Chem Int Ed Engl, 47, 1766-1769, (2008).
[37] W. Su, Z. Feng, T. Chen, P. Ying, and C. Li, "Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy," J. phys. Chem. C, 112, 7710-7716, (2008).
[38] A. Primo, A. Corma, and H. Garcia, "Titania supported gold nanoparticles as photocatalyst," Phys Chem Chem Phys, 13, 886-910, Jan 21 (2011).
[39] U. Diebold, "The surface science of titanium dioxide," surface science reports, 48, 53-229, (2003).
[40] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, "Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser," Applied Surface Science, 253, 7497-7500, (2007).
[41] M. S. Hunter, F. Keller, and D. L. Robinson, "Structural Features of Oxide Coatings on Aluminum," Journal of the Electrochemical Society, 100, 411-419, (1953).
[42] H. Herman, J. C. Scully, "Corrosion: aqueous processes and passive films," Treatise on materials science and technology New York: Academic Press, 1, (1983).
[43] V. P. Parkhutik and V. I. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," j. Phys. D: Appl. Phys., 25, 1258-1263, (1992).
[44] F. M. O. Jessensky, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics, 72, 1173-1175, (1998).
[45] N. Q. Zhao, X. X. Jiang, C. S. Shi, J. J. Li, Z. G. Zhao, and X. W. Du, "Effects of anodizing conditions on anodic alumina structure," Journal of Materials Science, 42, 3878-3882, (2007).
[46] J. P. O'Sullivan and G. C. Wood, "The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium," Proc. R .Soc. Lond. A, 317, 511-543, (1970).
[47] 許捷翔, "利用陽極氧化鋁薄膜在矽太陽能電池表面製作抗反射奈米結構," 碩士論文, 國立中央大學光電科學與工程學系, (民101年6月).
[48] S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, 12, 240-251, Mar (2002).
[49] 李正中, "薄膜光學與鍍膜技術," 藝軒圖書出版社, 第六版, (2012).
[50] F. P. Brian A. Gregg, S. Ferrere, and C. L. Fields, "Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces," J. Phys. Chem. B, 105, 1422-1429, (2001).
[51] G. Schlichthörl, S. Y. Huang, A. J. Nozik, M. Grätzel, and A. J. Frank, "Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells," J. Phys. Chem. B, 101, 2576-2582, (1997).
[52] P. J. Cameron and L. M. Peter, "How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?," J. Phys. Chem. B, 109, 7392-7398, (2005).
[53] 林健均, "二氧化鈦緻密層對染料敏化太陽能電池特性之影響," 碩士論文, 國立中央大學物理研究所, (民97年6月).
[54] X. Gao, J. Chen, and C. Yuan, "Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness," Journal of Power Sources, 240, 503-509, (2013).
[55] Y. P. Zhao and J. G. Fan, "Clusters of bundled nanorods in nanocarpet effect," Applied Physics Letters, 88, 103123, (2006).
[56] 陳君閣, "以陽極處裡法製備奈米孔洞陣列光電元件," 博士論文, 國立中央大學光電科學與工程學系, (民102).
[57] S. Nakao, N. Yamada, T. Hitosugi, Y. Hirose, T. Shimada, and T. Hasegawa, "Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition," Thin Solid Films, 518, 3093-3096, (2010).