跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李世偉
Shih-wei Lee
論文名稱:
Investigating the Investment-Uncertainty Relationship Under Lévy and CEV Processes
指導教授: 張傳章
Chuang-chang Chang
陳妙盈
Miao-ying Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 99
語文別: 英文
論文頁數: 32
外文關鍵詞: Lévy process, Real option model, CEV, Cri
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以往的文獻當中,大部分是以幾何布朗運動來模擬公司專案的現金流量,而其波動度則是以歷史的資料來設定一個常數波動度。但是現實上波動度並非是固定不變的,而且利用幾何布朗運動來模擬公司專案的現金流量也不能夠捕捉到現金流量不連續的跳動情況,本篇文章的模型是利用一個更一般化的隨機過程 Le ́vy 過程的框架來捕捉含有離散跳動情形的公司專案現金流量動態過程,並以Constant Elasticity of Variance (CEV)模擬變動的波動度。最後探討在Jump diffusion 模式加上CEV的實質選擇權模型之下的投資不確定性關係,並推導出公司專案的最適投資點。


    Much of real options’ work assumes that the underlying variable follows a constant volatility geometric Brownian motion. This paper uses a more general assumption which is Le ́vy process framework and this paper chooses a specific case of Le ́vy process which is jump diffusion type model. We use jump diffusion type model with the constant elasticity of variance diffusion to examine the investment-uncertainty relationship in real options model. Finally we derive a solution for the critical investment value of a corporate’s projects.

    中文摘要 i Abstract ii Content iii List of figures iv List of tables v I. INTRODUCTION 1 II. THE MODEL 4 III. NUMERICAL SOLUTIONS 8 IV. CONCLUSIONS 11 Appendix (A) 12 Appendix (B) 14 References 24

    Bekaert, G., & Wu, G. (2000). Asymmetric volatility and risk in equity markets. Review of Financial Studies, 13: 1-42
    Bessembinder H, Coughenour JF, Seguin PJ, Smoller MM (1995) Mean-reversion in equilibrium asset prices: evidence from the futures term structure. J Financ, 50:361-375
    Chang Chuang-Chang and Chen Miao-Ying (2011), ‘Re-examining the Investment- Uncertainty Relationship in a Real Options Model’, Review of Quantitative finance and accounting, force coming
    Cox, J. C. (1975). Notes on option pricing I: Constant elasticity of variance diffusions (working paper), Stanford University.
    Dennis, P. & Mayhew, S (2002). Risk-neutral skewness: Evidence from stock options. Journal of Financial and Quantitative Analysis, 37, 471-493
    Dixit, A.K. and R.S. Pindyck(1994), Investment under Uncertainty, Princeton University Press.
    Dmitry Davydov and Vadim Linetsky (2001), ‘Pricing and Hedging Path-Dependent options Under the CEV Process’, Management Science, 47: 949-965
    Geman, H., & Shih, Y. F. (2009). Modeling commodity prices under the CEV model. Journal of Alternative Investment, 11: 65-84
    Hassett KA, Metcalf GE (1995) Investment under alternative return assumptions: comparing random walks and mean reversion. J Econ Dyn Control, 19:1471-1488
    Jose ́ Carlos Dias and Joa ̃o Pedro Vidal Nunes (2011),’pricing Real Option Under the Constant Elasticity of Variance Diffusion’, Journal of Futures Markets, 31: 230-250
    Lund D (1993) The lognormal diffusion is hardly an equilibrium price process for exhaustible resources. J Environ Econo Manag, 25:235-241
    McDonald R, Siegel D (1986) The value of waiting to invest. Quart J Econ, 101:707-727
    Peter Carr and Liuren Wu(2004),’Time-Changed Le ́vy Processes and Option Pricing, Journal of Financial Economics, 71:113-141
    Rama Cont and Peter Tankov(2004), Financial Modelling With Jump Process, CRC Press LLC
    Sarkar,S.(2000),’On the Investment-Uncertainty Relationship in a Real Option Model’, Journal of Economic Dynamics and Control, 24:219-25
    Sarkar, S.(2003)’ The Effects of Mean Reversion on Investment under Uncertainty’, Journal of Economic Dynamics and Control, 28:377-96.

    QR CODE
    :::