| 研究生: |
朱信旗 Hsin-chi Chu |
|---|---|
| 論文名稱: |
電磁式感應加熱柴氏法生長氧化鋁單晶過程之數值模擬分析 Numerical simulation during an inductively heated Czochralski sapphire crystal growth system |
| 指導教授: |
陳志臣
Jyh-chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 柴氏法 、晶體生長 、氧化鋁單晶 、數值模擬 |
| 外文關鍵詞: | Czochralski, crystal growth, sapphire, Numerical simulation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
柴氏單晶生長法(Czochralski single crystal growth method)又稱提拉法,是目前生長氧化鋁單晶(Sapphire)最經濟也最常使用的方法。為能確保生長sapphire單晶的品質及掌握坩堝內熔湯之生長情況,因此使用有限元素法(FEM)為基礎的COMSOL Multiphysics軟體來進行電磁場、熱場及流場三場耦合之柴氏生長氧化鋁單晶過程的數值分析模擬,以獲得熔湯內之熱流場分佈情形及相關資訊。
本研究主要探討CZ法生長氧化鋁單晶過程中以電磁場感應加熱的方式分析坩堝內的熔湯之熱流場的分佈情形。從未長晶階段到不同長晶過程逐一進行模擬並探討流場內及晶體固液界面形態的變化,包括調整感應電流及加熱線圈位置改變的影響。分析影響熔湯內熱流場分佈的各項製程的重要因素。希望透過完整的分析模擬,將整個長晶過程一一呈現。
模擬結果探討氧化鋁單晶生長過程中調降加熱線圈的電流量,熔湯內部溫度分佈等溫線及速度場會趨於緩和。且因為晶體生長長度增加,晶體會帶走較多的能量,使得固液界面曲率增加會更凸向熔湯。最後探討調整加熱線圈位置的影響,加熱線圈產生的感應磁場中心接近坩堝中間位置時,加熱坩堝內氧化鋁熔湯達適當溫度時所需的能量最小。這些分析結果將可作為柴氏長晶系統生長氧化鋁單晶時之重要參考指標,並可為將來深入研究單晶生長機制的基礎。
Sapphire single crystals are widely used in variety of modern high- tech applications. Among crystal growth methods, the Czochralski single crystal growth method is a good commercial method for growing the larger, high-optical-quality sapphire crystal. The finite element software COMSOL Multiphysics is employed to simulate the melt temperature and velocity distribution during an inductively heated of sapphire crystal growth process using CZ.
Temperature and velocity field in an inductively heated Czochralski crystal growth furnace is investigated numerically during the different crystal growth stage (from 25 to 125mm). The temperature and flow field inside the furnace was calculated coupled with the heat generation of the Ir crucible that was induced by the electromagnetic field (supported by the RF coil). The heat loss from the free surface and the crystal are due to thermal radiations which are calculated by the emissivity, the Gebhart factor and temperature of the furnace surface.
The results show that the temperature distributions of the melt and crystal are affected by the relative position between crucible and induction coil due to the modification of the electromagnetic field in the CZ furnace. The shape of solid-melt interface is also affected by the radiation of the crystal surface. Therefore, the growth parameters such as the position of RF coil, the growth length of crystal and the surface tension etc.; will be investigated in the present study.
1. S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon and T. I. Kim, “Evaluation of nanopipes in MOCVD grown (0001)GaN/Al2O3 by wet chemical etching,” Journal of Crystal Growth, Vol 191, pp. 275, (1998).
2. S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue- light-emitting diodes,” Applied Physsics Letters, Vol 64, pp. 1687, (1994).
3. Brian R. Pamplin ed., Crystal Growth., 2nd edition, Pergamon Press Ltd., 1980.
4. Pawel E. Tomaszewski, “Jan Czochralski-father of the Czochralski method,” Journal of Crystal Growth, Vol 236, pp. 1-4, (2002).
5. Jan Czochralski, “Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,” Z. Phys. Chemie, Vol 92, pp. 219, (1918).
6. G. K. Teal and J. B. Little, “Growth of germanium single crystals,” Physical Review, Vol 78, pp. 647, (1950).
7. H. E. Buckley, Crystal Growth., John Wiley and Sons Inc., New York, (1951).
8. H. J. Scheel and T. Fukuda, “The Development of Crystal Growth Technology,” Crystal Growth Technology, pp.3-14, (2003).
9. K. Nassau and L.G. Van Uitert, “Preparation of Large Calcium-Tungstate Crystals Containing Paramagnetic Ions for Maser Applications,” Journal of Applied Physics, Vol 31, pp. 1508, (1960).
10. 張克從和張樂潓,晶體生長,科學出版社,1981。
11. J. J. Derby and R.A. Brown, “Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅰ. Simulation,” Journal of Crystal Growth, Vol 74, pp. 605-624, (1986).
12. J. J. Derby and R.A. Brown, “Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅱ. Processing strategies,” Journal of Crystal Growth, Vol 75, pp. 227-240, (1986).
13. F. Dupret, Y. Ryckmans, P. Wouters and M. J. Crochet, “Numerical calculation of the global heat transfer in a Czochralski furnace,” Journal of Crystal Growth, Vol 79, pp. 84-91, (1986).
14. F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters and M. J. Crochet, “Global modeling of heat transfer in crystal growth furnaces,” Int. J. Heat Mass Transfer, Vol 33, pp. 1849-1871, (1990).
15. N. Van den Bogaert and F. Dupret, “Dynamic global simulation of the Czochralski process Ⅰ. Principles of the method,” Journal of Crystal Growth, Vol 171, pp. 65-76, (1997).
16. N. Van den Bogaert and F. Dupret, “Dynamic global simulation of the Czochralski process Ⅱ. Analysis of the growth of a germanium crystal,” Journal of Crystal Growth, Vol 171, pp. 77-93, (1997).
17. A. Lipchin and R. A. Brown, “Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon,” Journal of Crystal Growth, Vol 216, pp. 192-203, (2000).
18. K. Takano, Y. Shiraishi, T. Iida, N. Takase, J. Matsubara, N. Machida, M. Kuramoto and H. Yamagishi, “Numerical simulation for silicon crystal growth of up to 400mm diameter in Czochralski furnaces,” Mater. Sci. and Eng., Vol B73, pp. 30-35, (2000).
19. K. Takano, Y. Shiraishi, T. Iida, N. Takase, J. Matsubara, N. Machida, M. Kuramoto and H. Yamagishi, “Global simulation of the CZ silicon crystal growth up to 400mm in diameter,” Journal of Crystal Growth, Vol 229, pp. 26-30, (2001).
20. M. Li, Y. Li, N. Imaishi and T. Tsukada, “Global simulation of a silicon Czochralski furnace,” Journal of Crystal Growth, Vol 234, pp. 32-46, (2002).
21. T. Tsukada, N. Imaishi and M, Hozawa, “Theoretical Study of the Flow and Temperature Fields in CZ Single Crystal Growth,” Journal of Chemical Engineering, Vol 21, pp. 184-191, (1988).
22. T. Tsukada, M. Hozawa and N. Imaishi, “Global Analysis of Transfer in CZ Crystal Growth of Oxide,” Journal of Chemical Engineering, Vol 27, pp. 25-31, (1994).
23. Kobayashi N., “Hydrodynamics in Czochralski Growth-Computer Analysis and Experiments,” Journal of Crystal Growth, Vol 52, pp. 425-434, (1981).
24. Hurle D. T. J., “Analytical Representation of the Shape of the Meniscus in Czochralski Growth,” Journal of Crystal Growth, Vol 63, pp. 13-17, (1983).
25. Wu X. B., Geng X. and Guo Z. Y., “Fundamental Study of Crystal-Melt Interface Shape Change in Czochralski Crystal Growth,” Journal of Crystal Growth, Vol 169, pp. 786-794 (1996).
26. Geng X., Wu X. B. and Guo Z. Y., “Numerical Simulations of Combined Flow in Czochralski Crystal Growth,” Journal of Crystal Growth, Vol 179, pp. 309-319, (1997).
27. You Rong Li, Deng Fang Ruan, Nobuyuki Imaishi, Shuang Ying Wu, Lan Peng and Dan Ling Zeng, “Global simulation of a silicon Czochralski furnace in an axial magnetic field,” International Journal of Heat and Mass Transfer, Vol 46, pp. 2887–2898, (2003).
28. Akira Hayashi, Masaki Kobayashi, Chengjun Jing, Takao Tsukada and Mitsunori Hozawa, “Numerical simulation of the Czochralski growth process of oxide crystals with a relatively thin optical thickness,” International Journal of Heat and Mass Transfer, Vol 47, pp. 5501–5509, (2004).
29. Jyotirmay Banerjee and Krishnamurthy Muralidhar, “Role of internal radiation during Czochralski growth of YAG and Nd:YAG crystals,” International Journal of Thermal Sciences, Vol 45, pp. 151–167, (2006).
30. M. H. Tavakoli and H. Wilke, “Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1:non-rotating seed,” Cryst. Res. Techol., Vol 42, No. 6, pp. 544-557, (2007).
31. 陳志勇,“柴式法生長鈮酸鋰塊晶之研究分析”,國立中央大學機械工程研究所,碩士論文, (2004)。