跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周雅婷
Ya-ting Chou
論文名稱: 基於匹配代價曲線特徵之遮蔽偵測之研究
A Study on Occlusion Detection Using Features of Matching Cost Curves
指導教授: 唐之瑋
Chih-wei Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 立體視覺匹配遮蔽偵測匹配代價曲線曲線配適
外文關鍵詞: stereo matching, occlusion detection, matching cost curve, curve fitting
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像的遮蔽偵測為電腦視覺領域的重要研究課題,本論文提出利用匹配代價曲線特徵以進行遮蔽偵測。本論文方案可分成四個步驟,第一部分找出曲線上最低點的左與右有效區域。第二部分以變異數(variance)擷取曲線特徵,再區分為左右變異數較高之T+T區域,及至少有一區為變異數較低之非T+T區域。針對此兩種區域,第三部份各進行不同的遮蔽偵測方案。由於此兩個遮蔽偵測的方法在遮蔽區域誤判率較高,故針對遮蔽區域再使用另一以匹配影像曲線為基礎且結合geometry-based uniqueness constraint (MC-GUC)之遮蔽方案確認,以增強偵測準確率,減少非遮蔽區域之偵測誤判。第四部份,我們結合跟形像學(morphological image processing)改進遮蔽圖,以提高遮蔽偵測準確率。本論文方案相較於MC_GUC,可有效降低非遮蔽區域之遮蔽誤判平均達5.55%,而整體準確率也能提升1.96%。


    Occlusion detection is important for applications of computer vision. Thus, this thesis proposes an occlusion detection scheme using features of matching cost curves. The proposed scheme can be divided into four steps. First, we find the left and right effective regions around the disparity that has the lowest cost of the matching cost curve. Secondly, based on the variances of the left and right effective regions, a matching cost curve can be divided into either a T + T region, having large variances in both left and right effective regions, or a non-T + T region, having small variance on at least one effective region. Accordingly, the third part of the proposed scheme applies two different occlusion detection methods on these two kinds of regions. Since the aforementioned occlusion detection methods have high false positive rate in occluded regions, we use another matching cost based occlusion detection algorithm that combines with geometry-based uniqueness constraint (MC-GUC) to enhance detection accuracy and reduce errors on non-occluded regions simultaneously. Finally, we use morphological image processing to improve the accuracy of occlusion map. Compared with MC_GUC, the proposed scheme can effectively reduce error rate around an average of 5.55% on non-occluded regions, while the overall detection accuracy can be improved around 1.96%.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究方法 2 1.4 論文架構 2 第二章 立體視覺影像之錯誤對應問題 3 2.1 立體視覺匹配問題 3 2.2 立體視覺匹配之代價合併技術現況 5 2.2.1 適應性視窗演算法(Adaptive Window Algorithm) 5 2.2.2 適應性支持權重演算法 (Adaptive Support-Weight Algorithm) 8 2.3 錯誤對應問題 11 2.4 總結 13 第三章 立體視覺匹配中之遮蔽偵測 15 3.1 計算視差過程進行之遮蔽偵測 15 3.2 基於視差圖之遮蔽偵測 16 3.2.1 以視差結果為主之遮蔽偵測 16 3.2.2 基於視差與原始影像資訊之遮蔽偵測 18 3.3 基於匹配代價之遮蔽偵測 20 3.4 總結 22 第四章 本論文提出之基於匹配代價曲線特徵之遮蔽偵測 23 4.1 曲線特徵之有效區間 24 4.1.1 利用曲線配適(curve fitting)之左區間界定 24 4.1.2 利用二次微分界定右區間 28 4.1.3 去除無效區間 29 4.1.4 擷取有效區間演算法 29 4.2 紋理區域與非紋理區域之匹配代價曲線特徵 31 4.3 基於匹配代價曲線特徵之遮蔽偵測 32 4.3.1 T+T區域之匹配代價曲線之特性 33 4.3.2 非T+T區域之彩色影像之特性 37 4.4 利用形態學(MORPHOLOGICAL IMAGE PROCESSING)改善遮蔽圖41 4.4.1 使用Closing改善結合Geometry-Based Uniqueness Constraint與匹配代價(MC_GUC)之遮蔽偵測 42 4.4.2 使用Erosion填補不連續遮蔽之區域 43 4.5 結論 44 第五章 實驗結果與討論 45 5.1 測試影像與參數設定 45 5.1.1 測試影像 45 5.1.2 參數設定 47 5.2 遮蔽偵測之效能評估與分析 48 5.3 總結 55 第六章 結論與未來展望 56 參考文獻 57

    [1]O. Veksler, “Stereo correspondence with compact windows via minimum ratio cycle,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1654-1660, Dec. 2002.
    [2]K.-J. Yoon, and I. -S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 650-656, Apr. 2006.
    [3]G. Egnal, and R. P. Wildes, “Detecting binocular half-occlusions: empirical comparisons of five approaches,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1127-1133, Aug. 2002.
    [4]S.-H. Li, “Asymmetric Occlusion Detection Using Matching Cost for Stereo Matching,” Master thesis, Deptartment of Communication Engineering, National Central University, Taiwan. Jul. 2011.
    [5]M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993-1008, Aug. 2003.
    [6]D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” International Journal of Computer vision, vol. 47, no. 1-3, pp. 7-42, Apr. 2002.
    [7]H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328-341, Feb. 2008.
    [8]T. Kanade, and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 9, pp. 920-932, Sep. 1994.
    [9]Y. Boykov, O. Veksler, and R. Zabih, “A variable window approach to early vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1283-1294, Dec. 1998.
    [10]K. Nakayama, and S. Shimojo, “Da Vinci stereopsis: Depth and subjective occluding contours from unpaired image points,” Vision research, vol. 30, no. 11, pp. 1811-1825, May 1990.
    [11]S. T. Barnard, and M. A. Fischler, “Computational stereo,” ACM Computing Surveys, vol. 14, no. 4, pp. 553-572, Dec. 1982.
    [12]M. Bleyer, C. Rother, and P. Kohli, “Surface stereo with soft segmentation,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1570-1577, Jun. 2010.
    [13]M. Bleyer, and M. Gelautz, “Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions,” Signal Processing: Image Communication, vol. 22, no. 2, pp. 127-143, Feb. 2007.
    [14]Q. Yang, L. Wang, R. Yang et al., “Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 492-504, Mar. 2009.
    [15]S. Ince, and J. Konrad, “Geometry-based estimation of occlusions from video frame pairs,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. ii/933-ii/936 Vol. 2, Mar. 2005.
    [16]C. L. Zitnick, and T. Kanade, “A cooperative algorithm for stereo matching and occlusion detection,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 7, pp. 675-684, Jul. 2000.
    [17]W. Xiong, H. S. Chung, and J. Jia, “Fractional stereo matching using expectation-maximization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 428-443, Mar. 2009.
    [18]P.-M. Jodoin, C. Rosenberger, and M. Mignotte, “Detecting half-occlusion with a fast region-based fusion procedure,” Proceedings of the British Machine Vision Conference, pp. 417-426, Sep. 2006.
    [19]J. D. Oh, S. Ma, and C.-C. Kuo, “Stereo matching via disparity estimation and surface modeling,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, Jun. 2007.
    [20]M. Bleyer, M. Gelautz, C. Rother et al., “A stereo approach that handles the matting problem via image warping,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 501-508, Jun. 2009.
    [21]W. Chen, M.-J. Zhang, and Z.-H. Xiong, “Fast semi-global stereo matching via extracting disparity candidates from region boundaries,” IET computer vision, vol. 5, no. 2, pp. 143-150, Mar. 2011.

    QR CODE
    :::