跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉超明
Chao-Ming Yeh
論文名稱: 以智慧型凸極式反電動勢估測器為基礎之無感測變流器饋接型壓縮機驅動系統開發
Development of Sensorless Inverter-Fed Compressor Drive System using Back-EMF Based Intelligent Estimator with Maximum Torque Per Ampere Control
指導教授: 林法正
Faa-Jeng Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 125
中文關鍵詞: 小波模糊類神經網路內藏式永磁同步馬達無感測變頻壓縮機每安培最大轉矩控制凸極式反電動勢
外文關鍵詞: interior permanent magnet synchronous motor, Sensorless inverter-fed compressor, saliency back EMF., maximum torque per ampere, wavelet fuzzy neural network
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個利用小波模糊類神經網路估測器之以凸極式反電動勢
    為基礎之速度估測法,結合每安培最大轉矩控制,以改善應用在變頻壓縮
    機驅動系統上內藏式永磁同步馬達之性能。文中首先說明內藏式永磁同步
    電動機及其凸極式反電動勢之特性與數學模型,並分析了以凸極式反電動
    勢為基礎的無感測控制及啟動策略,且同時提出適用於數位訊號處理器之
    新型每安培最大轉矩控制;其次提出一新型無感測技術,利用小波模糊類
    神經網路估測器之以凸極式反電動勢為基礎之速度估測法做為馬達控制策
    略,以達到快速的暫態響應及節能效益。此外小波模糊類神經網路的網路
    架構、線上學習法則將在本文被詳細的討論,並將以PSIM 搭配C 撰寫之
    DLL 檔為模擬軟體進行模擬。最後利用微芯公司所生產之數位訊號處理器
    實現變頻壓縮機驅動系統,並且以實驗結果驗證所提出方法之可行性。


    A saliency back-EMF based wavelet fuzzy neural network (WFNN) torque
    observer combining with a new-type maximum torque per ampere (MTPA)
    control is proposed in this thesis to improve the speed estimating performance of
    a sensorless interior permanent magnet synchronous motor (IPMSM) used in
    inverter-fed compressor drive systems. First, the structure, characteristics and
    mathematical model of the IPMSM and the saliency back-EMF estimator are
    discussed, and the start-up strategy based on saliency back EMF is added. Then,
    a new saliency back EMF based MTPA control suitable for the implementation
    using digital signal processor (DSP) is introduced. Moreover, a back-EMF based
    speed estimation method using WFNN torque observer is proposed. Furthermore,
    the network structure and the online learning algorithms of WFNN are discussed
    in detail. In addition, a Microchip DSP is adopted to develop the sensorless
    inverter-fed compressor drive system. Finally, some experimental results are
    given to verify the feasibility of the proposed control schemes.

    中文摘要 ............................................................................................................ I 英文摘要 .......................................................................................................... II 誌謝 ................................................................................................................. III 目錄 ................................................................................................................. IV 圖目錄 ............................................................................................................ VII 表目錄 ............................................................................................................. XI 第一章 緒論 .................................................................................................... 1 1-1 研究動機與目的 ................................................................................ 1 1-2 文獻回顧與簡介 ................................................................................ 5 第二章 空調系統之介紹 .............................................................................. 10 2-1 前言 ................................................................................................. 10 2-2 冷媒循環系統介紹 .......................................................................... 10 2-3 能源使用效率之計算及變頻與定頻空調之比較 ........................... 15 2-4 實驗空調系統硬體設備介紹........................................................... 19 2-5-1 壓縮機速度偵測電路 ............................................................ 21 2-5-2 軟啟動電路修改 .................................................................... 21 2-5-3 冷氣風扇電源供應電路 ........................................................ 22 2-5-4 壓縮機控制板切換電路 ........................................................ 22 2-5-5 溫度感測電路 ........................................................................ 23 2-5-6 實驗空調系統之人機介面..................................................... 24 第三章 變頻驅動器硬體介紹 ...................................................................... 26 3-1 無感測變頻驅動器 .......................................................................... 26 3-2 數位信號處理器 .............................................................................. 28 3-3 無感測變頻驅動器 .......................................................................... 29 3-3-1 開發板電路 ............................................................................ 29 3-3-2 系統板電流回授比例準位調整電路 ..................................... 29 3-3-3 系統板過電流保護電路 ........................................................ 30 3-3-4 系統板開關元件互鎖電路..................................................... 31 3-3-5 系統板數位編碼器之差動緩衝電路 ..................................... 33 3-3-6 系統板開數位對類比轉換電路 ............................................. 35 第四章 內藏式永磁同步馬達數學模型及以凸極式反電動勢為基礎速度估 測 ..................................................................................................................... 38 4-1 前言 ................................................................................................. 38 4-2 內藏式永磁同步馬達數學模型 ....................................................... 40 4-2-1 座標變換介紹 ........................................................................ 40 4-2-2 內藏式永磁同步馬達在abc 座標系下之數學模型 ............... 43 4-2-3 內藏式永磁同步馬達在?? 座標系下之數學模型 ................ 45 4-2-4 內藏式永磁同步馬達在dq 座標系下之數學模型 ................. 48 4-3 內藏式永磁同步馬達機械參數之量測 ........................................... 51 4-4 凸極式反電動勢之定義 .................................................................. 55 4-5 利用比例積分微分轉矩估測器之以凸極式反電動勢為基礎速度估 測法原理 ................................................................................................... 58 4-6 以凸極式反電動勢為基礎之無感測控制啟動策略........................ 64 第五章 以凸極式反電動勢估測器結合磁阻轉矩之每安培最大轉矩控制 67 5-1 內藏式永磁同步馬達與磁阻轉矩簡介 ........................................... 67 5-2 內藏式永磁同步馬達之每安培最大轉矩控制 ............................... 68 5-3 內藏式永磁同步馬達之旋轉座標軸? 角控制 ................................ 70 5-4 以凸極式反電動勢估測器之每安培最大轉矩控制........................ 74 第六章 利用小波模糊類神經網路轉矩估測器之以凸極式反電動勢為基礎 之速度估測法 .................................................................................................. 77 6-1 前言 ................................................................................................. 77 6-2 利用小波模糊類神經網路轉矩估測器之以凸極式反電動勢為基礎 之速度估測法原理 ................................................................................... 78 6-2-1 小波模糊類神經網路架構..................................................... 78 6-2-2 小波模糊類神經網路線上學習法則 ..................................... 82 6-2-3 比例積分微分與小波模糊類神經網路速度轉矩估測器之比 較 ........................................................................................................ 84 第七章 模擬與實驗結果 .............................................................................. 86 7-1 前言 ................................................................................................. 86 7-2 以凸極式反電動勢估測器為基礎結合每安培最大轉矩控制之模擬 結果 .......................................................................................................... 87 7-3 以凸極式反電動勢為基礎之無感測控制啟動策略實驗結果 ........ 91 7-4 以凸極式反電動勢估測器為基礎結合每安培最大轉矩控制之實驗 結果 .......................................................................................................... 93 7-5 小波模糊類神經網路估測器之以凸極式反電動勢為基礎之速度估 測法實驗結果 ........................................................................................... 97 第八章 結論與未來研究方向 ................................................................. 103 參考文獻 ....................................................................................................... 104 作者簡歷 ....................................................................................................... 109

    [1] 經濟部能源局,2012 能源產業技術白皮書,民國101 年4 月。
    [2] 經濟部能源局,99 年能源統計手冊,民國99 年。
    [3] 陳加偉,冷凍空調節能技術之發展規劃,民國98 年12 月。
    [4] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無
    感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,
    民國100 年7 月。
    [5] Thomas M. J., Gerald B. K., and Thomas W. N., ‘Development and
    implementation of a new adaptive intelligent speed controller for IPMSM
    drive’, IEEE Transactions on Industry Applications, 1986, 22, (4), pp.
    738-746
    [6] Pan, C. T., Sue, S. M.: ‘A linear maximum torque per ampere control for
    IPMSM drives over full-speed range’, IEEE Transactions on Energy
    Conversion, 2005, 20, (2), pp. 359-366
    [7] Kim, H., Hartwig, J., Lorenz, R.D.: ‘Using on-line parameter estimation
    to improve efficiency of IPM machine drives’, in Proc. Power Electronics
    Specialists Conference, 2002, pp. 815-820
    [8] Uddin, M.N., Radwan, T.S., Rahman, M.A.: ‘Performance of interior
    permanent magnet motor drive over wide speed range’, IEEE
    Transactions on Energy Conversion, 2002, 17, (1), pp. 79-84
    [9] Chy, M.M.I., Uddin, M.N.: ‘Development and implementation of a new
    Adaptive intelligent speed controller for IPMSM drive’, IEEE
    Transactions on Industry Applications, 2009, 45, (3), pp. 1106-1115
    [10] Mohamed, Y.A.R.I., Lee, T.K.: ‘Adaptive self-tuning MTPA vector
    controller of IPMSM drive system’, IEEE Transactions on Energy
    conversion, 2006, 21, (3)
    105
    [11] Bolognani, S., Petrella, R., Prearo, A., Sgarbossa, L.: ‘Automatic tracking
    of MTPA trajectory in IPM motor based on AC current injection’, IEEE
    Trans. Industry Applications, 2011.
    [12] Uddin, M.N., Rebeiro, R.S.: ‘Online efficiency optimization of a
    fuzzy-logic-controller-based IPMSM drive’, IEEE Transactions on
    Industry Applications, 2011, 47, (2)
    [13] Consoli A., Musumeci S., Raciti A., Testa A.: ‘Sensorless vector and
    speed control of brushless motor drives’, IEEE Trans. Industrial
    Electronics, 1994, 41, (1), pp. 91-96
    [14] French C., Acarnley P.: ‘Control of permanent magnet motor drives using
    a new position estimation technique’, IEEE Trans. Industry Applications,
    1996, 32, (5), pp. 1089-1097
    [15] Degner M.W., Lorenz R.D.: ‘Using multiple saliencies for the estimation
    of flux position and velocity in AC machine’, IEEE Trans. Industry
    Applications, 1998, 34, (5), pp. 1097-1104
    [16] Comanescu M., Xu L.: ‘An improved flux observer based on PLL
    frequency estimation for sensorless vector control of induction motors’,
    IEEE Trans. Industrial Electronics, 2006, 53, (1), pp. 50-56
    [17] Tomita M., Senjyu T., Doki S., Okuma S.: ‘New sensorless control for
    brushless DC motors using disturbance observers and adaptive velocity
    estimations’, IEEE Trans. Industrial Electronics, 1998, 45, (2), pp.
    274-282
    [18] Chen Z., Tomita M., Ichikawa S., Doki S., Okuma S.: ‘Sensorless control
    of interior permanent magnet synchronous motor by estimator of an
    extended electromotive force’, Proc. IECON 00’, 2000, pp. 1814-1819
    [19] Ichikawa S., Tomita M., Doki S., Okuma S.: ‘Sensorless control of
    synchronous reluctance motors based on an extended EMF model and
    initial position estimation’, Proc. IECON 03’, 2003, pp. 2150-2155
    [20] Ichikawa S., Tomita M., Doki S., Okuma S.: ‘Sensorless control of
    106
    synchronous reluctance motors based on an extended EMF models
    considering magnetic saturation with online parameter identification’,
    IEEE Trans. Industry Applications, 2006, 42, (5), pp. 1264-1274
    [21] Kim H., Harke M.C., Lorenz R.D.: ‘Sensorless control of interior
    permanent magnet machine drives with zero-phase lag position
    estimation’, IEEE Trans. Industry Applications, 2003, 39, (6), pp.
    1726-1733
    [22] Harnefors L., Nee H.P.: ‘A general algorithm for speed and position
    estimation of AC motor’, IEEE Trans. Industrial Electronics, 2000, 47, (1),
    pp. 77-83
    [23] Yu, W., Li, X.: ‘Fuzzy identification using fuzzy neural betworks with
    stable learning algorithms’, IEEE Transactions on Fuzzy Systems, 2004,
    12, (3)
    [24] Lin, F.J., Shieh, H.J., Juang, P.K., Teng, L.T.: ‘Adaptive control with
    hysteresis estimation and compensation using RFNN for piezo-actuator’,
    IEEE Transactions on Ultasonics, Ferroelectrics, Frequency Control, 2006,
    53, (9)
    [25] Gao, Y., Er, M.J.: ‘An intelligent adaptive control scheme for postsurgical
    blood pressure regulation’, IEEE Transactions on Neural Networks, 2005,
    16, (2)
    [26] Lin, F.J., Huang, P.K., Wang, C.C., Teng, L.T.: ‘An induction generator
    system using fuzzy modeling and recurrent fuzzy neural network’ IEEE
    Transactions on Power Electronics, 2007, 22, (1)
    [27] Zhang, J., Walter, G.G., Miao, Y., Lee, W.N.: ‘Wavelet neural networks
    for function learning’, IEEE Transactions on Signal Processing, 1995, 43,
    (6)
    [28] Zhang, Q.: ‘Using wavelet networks in nonparametric estimation’, IEEE
    Transactions on Neural Networks, 1997, 8, (2)
    [29] Lin F.J., Shieh P.H., Chou P.H.: ‘Robust adaptive backstepping motion
    107
    control of linear ultrasonic motors using fuzzy neural network’, IEEE
    Trans. Fuzzy Syst., 2008, 16, (3), pp. 672-692
    [30] F. J. Lin, S. H. Lee, H. C. Chang, and Z. Y. Kao, “Sensorless DC
    inverter-fed compressor drive system using PIDNN,” Journal of Chinese
    Engineering, vol. 35, 2012.
    [31] 石吉亮,「內藏式永磁同步電動機之轉軸角度估測器及適應性步階回
    歸控制器之研製」,國立台灣科技大學電機工程系,博士論文,民國
    95 年11 月。
    [32] 張護繼,高子胤,林法正 "空調用之直流變頻技術" 電機月刊:能
    源資通訊節能科技專刊, vol. 228, Dec. 2009。
    [33] 郭文瑋,「變頻空調系統中無感測直流無刷馬達技術之研究」,元智大
    學電機工程系,碩士論文,民國95 年6 月。
    [34] 張哲銘,「應用於冷凍設備無位置感測永磁同步馬達驅動系統之開發」
    ,國立清華大學電機工程系,碩士論文,民國97 年6 月。
    [35] 張護繼,「無感測器直流變頻壓縮機驅動系統之研製」,中央大學電機
    工程系,碩士論文,民國99 年7 月。
    [36] 陳世杰,「中央空調直接負載控制績效分類與評估系統」,中原大學電
    機工程系,碩士論文,民國94 年7 月。
    [37] 徐圍琪,廖建順,「我國變頻空調機之SEER 發展現況介紹」,工業技
    術研究院冷凍空調與熱交換雙月刊第83 期。
    [38] 亞得力科技股份有限公司,http://www.prt-powerasis.com/customer.php.
    [39] 東元電機股份有限公司, http://www.teco.com.tw.
    [40] Microchip,dsPIC33FJ128MC708A datasheet.
    [41] Texas Instruments,AM26LS32ACN datasheet.
    [42] Microchip,MCP4922 datasheet.
    [43] 瑞智精密股份有限公司, http://www.rechi.com
    108
    [44] 劉昌煥,交流電機控制,東華書局,民國92。
    [45] Jang J.H., Ha J.I., Ohto M., Ide K., Sul S.K.: ‘Analysis of
    permanent-magnet machine for sensorless control based on
    high-frequency signal injection’, IEEE Trans. Industry Applications, 2004,
    40, (6), pp. 1595-1604
    [46] Yoon Y.D., Sul S.K. Morimoto S., Ide K.: ‘High-bandwidth sensorless
    algorithm for AC machines based on square-wave-type voltage injection’,
    IEEE Trans. Industry Applications, 2011, 47, (3), pp. 1361-1370

    QR CODE
    :::