跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎閔智
Min-chih Li
論文名稱: 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
Microwave-assisted hydrothermal preparation of metal sulfide powder and photochemistry for hydrogen evolution
指導教授: 李岱洲
Tai-chou Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 129
中文關鍵詞: 微波輔助金屬硫化物粉體產氫核殼結構光化學
外文關鍵詞: Microwave-assisted, Metal Sulfide Powder, Hydrogen evolution, Coreshell, Photochemistry
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源危機與環保問題為本世紀重要的挑戰,乾淨的氫能源成為取代石
    化燃料的最佳替代能源,使得發展光觸媒來分解水產氫的研究變得很重要,
    使用光觸媒有效利用太陽能分解水產氫,便是此研究的目標。
    實驗中使用的ZIS (ZnmIn2S3+m)可見光光觸媒,隨著溫度的上升有助於
    提升水分解效率,我們調整核殼結構(Coreshell)內部Nanoshell(Ag@Au)的
    吸收波段至紅外光,將太陽能轉換為熱能,形成光觸媒侷部加熱的效應,
    最高能有效提升光觸媒的產氫效率達74%。Nanoshell 是由銀與金奈米粒子
    所組成,在太陽光照射下其具有表面電漿共振效應,使用吸收波長在700
    nm 左右的Nanoshell 與光觸媒形成核殼結構後,表面電漿共振能量傳遞給
    外層的光觸媒,利於電子電洞的分離,提升產氫效率最高可達1.62 倍。
    我們也改變Nanoshell 上不同SiO2 厚度,觀察光觸媒與Nanoshell 之
    間的交互作用對於產氫效率的影響,當無SiO2 在兩者之間時,電子會在兩
    者之間傳遞,而過厚的SiO2 會阻礙表面電漿效應的能量傳遞,而使得光觸
    媒產氫效率提升幅度下降。
    將光觸媒與Nanoshell 直接合成核殼結構,可能會有光觸媒過厚或是
    部分Nanoshell 裸露的情形產生,所以我們嘗試先在ZIS 表面改質,再與
    Nanoshell 合成核殼結構,反之,也可以在Nanoshell 表面改質,再與ZIS
    合成核殼結構,使得每個Nanoshell 的表面都有均勻分布的ZIS,得到最佳的核殼結構。


    Energy crisis and environmental protection are big challenges of this century. Hydrogen is the most promising replacement for fossil fuels. Therefore, the development of visible-light-driven photocatalysts for water splitting is critical. The purpose of this study is to effectively use photocatalysts to change solar energy into hydrogen energy.
    We used ZIS (ZnmIn2S3+m) as visible-light-driven photocatalyst. Its water splitting reaction rate increased with the temperature. The absorption of the nanoshells in the coreshell nanoparticles can be adjusted systematically from visible light to IR range making the solar energy into heat and resulted in local thermal effect which can effectively enhance hydrogen evolution to 74%. Because the nanoshell was formed by silver and gold nanoparticles, it had the surface plasmon resonance. Using nanoshells absorbing at 700 nm can transfer enengy to photocatalysts and separated the combination of electrons and holes in photocatalysts making the enhancement of hydrogen evolution to 1.62 times.
    We also changed the thickness of SiO2 on the nanoshells to observe the interaction between nanoshells and coreshells which might influence the enhancement of hydrogen evolution. When there was no SiO2, electron would transfer between nanoshells and photocatalysts. Thicker thickness of SiO2 might hinder the translation of energy from nanoshells decreasing the enhancement of hydrogen evolution.
    Making photocatalysts directly into coreshell structures might cause thicker shell or uncovered nanoshells. So we try to mdify the surface of ZIS or mdify the surface of nanoshells and formed coreshell, making uniform distribution of ZIS on nanoshells.

    摘要I AbstractIII 致謝IV 目錄V 圖目錄VIII 表目錄XV 第一章緒論1 1-1前言1 1-2光觸媒的發展2 1-3研究動機5 第二章文獻回顧7 2-1光觸媒分解水產氫7 2-2光觸媒材料9 2-3ZnIn2S4光觸媒12 2-4(Ag-In-Zn)光觸媒14 2-5微波水熱法合成光觸媒15 2-6表面電漿效應介紹18 2-6-1光觸媒與表面電漿效應24 第三章實驗方法30 3-1實驗藥品30 3-2分析儀器與實驗儀器33 3-3實驗步驟35 3-3-1微波水熱法合成ZnmIn2S3+m(ZIS)35 3-3-2固態溶液粉體產氫速率量測36 3-3-3奈米殼結構(Nanoshell,Ag@Au@SiO2)製作38 3-3-4核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(微波反應)40 3-3-5核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(ZIS表面改質)40 3-3-6核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(Nanoshell表面改質) 40 3-3-7微波水熱法合成纖鋅礦(ZnS)41 3-3-8微波水熱法合成斜方晶系(AgInS2)41 3-3-9微波水熱法合成AgInZnS固態溶液42 第四章結果與討論43 4-1微波水熱法製備ZnmIn2S3+m(ZIS)43 4-1-1粉體性質與結構分析43 4-1-2粉體產氫之量測48 4-2奈米殼結構(Nanoshell,Ag@Au@SiO2)性質與結構分析50 4-2-1奈米殼結構(Nanoshell,Ag@Au@SiO2)的溫度效應55 4-3核/殼(Core-shell)(Ag@Au@SiO2/ZnIn2S4)光觸媒57 4-3-1奈米殼結構(Nanoshell)應用於ZIS光觸媒57 4-3-2核/殼(Ag@Au@SiO2/ZnIn2S4)光觸媒性質與結構分析60 4-3-3核/殼(Ag@Au@SiO2/ZnIn2S4)光觸媒產氫之量測65 4-3-4核/殼(Ag@Au@SiO2/ZnIn2S4)光觸媒螢光光譜分析69 4-3-5核/殼(Ag@Au@SiO2/ZnIn2S4)時間解析光激螢光光譜分析72 4-4核/殼(Core-shell)(Ag@Au@SiO2/ZnIn2S4)光觸媒(低濃度)75 4-4-1核/殼(Ag@Au@SiO2/ZnIn2S4)(低濃度)光觸媒產氫量測79 4-4-2核/殼(Ag@Au@SiO2/ZnIn2S4)(低濃度)光觸媒之光電轉換效 率84 4-5核/殼(Ag@Au@SiO2/ZnIn2S4)結構(ZIS表面改質)87 4-6核/殼(Ag@Au@SiO2/ZnIn2S4)結構(Nanoshell表面改質)92 4-7微波水熱法製備纖鋅礦(wurtize)結構ZnS94 4-8微波水熱法製備三成分AgInS295 4-9微波水熱法製備四成分AgInZnS97 第五章結論與未來展望101 附錄103 參考文獻106

    1. Bull, S. R., Renewable energy today and tomorrow. Proceedings of the
    IEEE, 2001. 89(8): p. 1216-1226.
    2. Crabtree, G. W., M. S. Dresselhaus, and M. V. Buchanan, The hydrogen
    economy. Physics Today, 2004. 57(12): p. 39-44.
    3. Turner, J. A., A realizable renewable energy future. Science, 1999.
    285(5428): p. 687-689.
    4. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a
    Semiconductor Electrode. Nature, 1972. 286( 5772): p. 474-476.
    5. Maeda, K. and K. Domen, New non-oxide photocatalysts designed for
    overall water splitting under visible light. The Journal of Physical
    Chemistry C, 2007. 111(22): p. 7851-7861.
    6. Lewis, N. S., Light work with water. Nature, 2001. 414(6864): p.
    589-590.
    7. Kudo, A., Recent progress in the development of visible light-driven
    powdered photocatalysts for water splitting. International journal of
    hydrogen energy, 2007. 32(14): p. 2673-2678.
    8. Kawai, T. and T. Sakata, Conversion of carbohydrate into hydrogen fuel
    by a photocatalytic process. 1980.
    9. Tsuji, I., H. Kato, H. Kobayashi, and A. Kudo, Photocatalytic H2
    Evolution Reaction from Aqueous Solutions over Band
    Structure-Controlled (AgIn) x Zn2 (1-x) S2 Solid Solution Photocatalysts
    with Visible-Light Response and Their Surface Nanostructures. Journal of
    the American Chemical Society, 2004. 126(41): p. 13406-13413.
    10. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters,
    2004. 33(12): p. 1534-1539.
    11. Steele, B. C. and A. Heinzel, Materials for fuel-cell technologies. Nature,
    2001. 414(6861): p. 345-352.
    12. Wu, C.-C., H.-F. Cho, W.-S. Chang, and T.-C. Lee, A simple and
    environmentally friendly method of preparing sulfide photocatalyst.
    Chemical Engineering Science, 2010. 65(1): p. 141-147.
    13. Chen, Y., S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li,
    Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with
    different visible-light photocatalytic performance. Dalton Transactions,
    2011. 40(11): p. 2607-2613.
    14. Chen, Y., S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li,
    Controlled syntheses of cubic and hexagonal ZnIn 2S4 nanostructures with
    different visible-light photocatalytic performance. Dalton Transactions,
    2011. 40(11): p. 2607-2613.
    15. Wang, T. X., S. H. Xu, and F. X. Yang, ZnIn2S4 nanopowder as an
    efficient visible light-driven photocatalyst in the reduction of aqueous Cr
    (VI). Materials Letters, 2012. 83: p. 46-48.
    16. Shen, S., J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-assisted
    hydrothermal synthesis of transition-metal doped ZnIn2S4 and its
    photocatalytic activity for hydrogen evolution under visible light. Journal
    of Power Sources, 2011. 196(23): p. 10112-10119.
    17. Hu, X., J. C. Yu, J. Gong, and Q. Li, Rapid mass production of
    hierarchically porous ZnIn2S4 submicrospheres via a
    microwave-solvothermal process. Crystal Growth and Design, 2007.
    7(12): p. 2444-2448.
    18. Shen, S., J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-assisted
    hydrothermal synthesis of transition-metal doped ZnIn 2S4and its
    photocatalytic activity for hydrogen evolution under visible light. Journal
    of Power Sources, 2011. 196(23): p. 10112-10119.
    19. Shen, S., L. Zhao, and L. Guo, Cetyltrimethylammoniumbromide
    (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient
    visible-light-driven photocatalyst for hydrogen production. International
    journal of hydrogen energy, 2008. 33(17): p. 4501-4510.
    20. Shen, J., J. Zai, Y. Yuan, and X. Qian, 3D hierarchical ZnIn2S4: The
    preparation and photocatalytic properties on water splitting. International
    journal of hydrogen energy, 2012. 37(22): p. 16986-16993.
    21. Shen, S., L. Zhao, and L. Guo, ZnmIn 2S3+ m (m= 1–5, integer): A new
    series of visible-light-driven photocatalysts for splitting water to hydrogen.
    International journal of hydrogen energy, 2010. 35(19): p. 10148-10154.
    22. Olekseyuk, I., V. Halka, O. Parasyuk, and S. Voronyuk, Phase equilibria in
    the AgGaS2–ZnS and AgInS2–ZnS systems. Journal of alloys and
    compounds, 2001. 325(1): p. 204-209.
    23. Torimoto, T., T. Adachi, K.-i. Okazaki, M. Sakuraoka, T. Shibayama, B.
    Ohtani, A. Kudo, and S. Kuwabata, Facile synthesis of ZnS-AgInS2 solid
    solution nanoparticles for a color-adjustable luminophore. Journal of the
    American Chemical Society, 2007. 129(41): p. 12388-12389.
    24. Kudo, A., I. Tsuji, and H. Kato, AgInZn7S9 solid solution photocatalyst for
    H2 evolution from aqueous solutions under visible light irradiation.
    Chemical communications, 2002(17): p. 1958-1959.
    25. Serrano, D., M. Uguina, R. Sanz, E. Castillo, A. Rodrıguez, and P.
    Sanchez, Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating. Microporous and mesoporous
    materials, 2004. 69(3): p. 197-208.
    26. Shahid, R., M. S. Toprak, and M. Muhammed, Microwave-assisted low
    temperature synthesis of wurtzite ZnS quantum dots. Journal of Solid
    State Chemistry, 2012. 187: p. 130-133.
    27. Ge, S. X., Z. Y. Shui, Z. Zheng, and L. Z. Zhang, A general
    microwave-assisted nonaqueous approach to nanocrystalline ternary metal
    chalcogenide and the photoluminescence study of CoIn2S4. Optical
    Materials, 2011. 33(8): p. 1174-1178.
    28. Link, S., Z. L. Wang, and M. El-Sayed, Alloy formation of gold-silver
    nanoparticles and the dependence of the plasmon absorption on their
    composition. The Journal of Physical Chemistry B, 1999. 103(18): p.
    3529-3533.
    29. Link, S. and M. A. El-Sayed, Spectral properties and relaxation dynamics
    of surface plasmon electronic oscillations in gold and silver nanodots and
    nanorods. The Journal of Physical Chemistry B, 1999. 103(40): p.
    8410-8426.
    30. Raether, H., Springer tracts in modern physics. Vol. 111. 1988.
    31. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of
    surface plasmon polaritons. Physics reports, 2005. 408(3): p. 131-314.
    32. Barnes, W. L., A. Dereux, and T. W. Ebbesen, Surface plasmon
    subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
    33. Mafuné, F., J.-y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe,
    Formation and Size Control of Silver Nanoparticles by Laser Ablation in
    Aqueous Solution. The Journal of Physical Chemistry B, 2000. 104(39): p.
    9111-9117.
    34. Link, S. and M. A. El-Sayed, Size and Temperature Dependence of the
    Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of
    Physical Chemistry B, 1999. 103(21): p. 4212-4217.
    35. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, The optical
    properties of metal nanoparticles: the influence of size, shape, and
    dielectric environment. The Journal of Physical Chemistry B, 2003.
    107(3): p. 668-677.
    36. Mock, J., M. Barbic, D. Smith, D. Schultz, and S. Schultz, Shape effects
    in plasmon resonance of individual colloidal silver nanoparticles. The
    Journal of chemical physics, 2002. 116(15): p. 6755-6759.
    37. Kottmann, J. P., O. J. Martin, D. R. Smith, and S. Schultz, Plasmon
    resonances of silver nanowires with a nonregular cross section. Physical
    Review B, 2001. 64(23): p. 235402.
    38. Lee, T. R., Metal Nanoshells for Plasmonically Enhanced Solar-to-Fuel
    Photocatalytic Conversion ppt.
    39. Maier, S. A. and H. A. Atwater, Plasmonics: Localization and guiding of
    electromagnetic energy in metal/dielectric structures. Journal of Applied
    Physics, 2005. 98(1): p. 011101.
    40. Wei, A., Plasmonic nanomaterials, in Nanoparticles2004, Springer. p.
    173-200.
    41. Cushing, S. K., J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D.
    Bristow, and N. Wu, Photocatalytic activity enhanced by plasmonic
    resonant energy transfer from metal to semiconductor. Journal of the
    American Chemical Society, 2012. 134(36): p. 15033-15041.
    42. Kochuveedu, S. T., D.-P. Kim, and D. H. Kim, Surface-plasmon-induced
    visible light photocatalytic activity of TiO2 nanospheres decorated by Aunanoparticles with controlled configuration. The Journal of Physical
    Chemistry C, 2012. 116(3): p. 2500-2506.
    43. Ingram, D. B. and S. Linic, Water splitting on composite
    plasmonic-metal/semiconductor photoelectrodes: evidence for selective
    plasmon-induced formation of charge carriers near the semiconductor
    surface. Journal of the American Chemical Society, 2011. 133(14): p.
    5202-5205.
    44. Zhang, Z., Z. Wang, S.-W. Cao, and C. Xue, Au/Pt
    Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced
    Photocatalytic Activities for Solar-to-Fuel Conversion. The Journal of
    Physical Chemistry C, 2013. 117(49): p. 25939-25947.
    45. Torimoto, T., H. Horibe, T. Kameyama, K.-i. Okazaki, S. Ikeda, M.
    Matsumura, A. Ishikawa, and H. Ishihara, Plasmon-enhanced
    photocatalytic activity of cadmium sulfide nanoparticle immobilized on
    silica-coated gold particles. The Journal of Physical Chemistry Letters,
    2011. 2(16): p. 2057-2062.
    46. Takahashi, T., A. Kudo, S. Kuwabata, A. Ishikawa, H. Ishihara, Y. Tsuboi,
    and T. Torimoto, Plasmon-Enhanced Photoluminescence and
    Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid
    Solution Nanoparticles. The Journal of Physical Chemistry C, 2012.
    117(6): p. 2511-2520.
    47. Duan, H. and Y. Xuan, Enhancement of light absorption of cadmium
    sulfide nanoparticle at specific wave band by plasmon resonance shifts.
    Physica E: Low-dimensional Systems and Nanostructures, 2011. 43(8): p.
    1475-1480.
    48. Li, J., S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, and N. Wu, Ag@ Cu2O core-shell nanoparticles as visible-light
    plasmonic photocatalysts. ACS Catalysis, 2012. 3(1): p. 47-51.
    49. Daneshvar, N., M. Rabbani, N. Modirshahla, and M. A. Behnajady,
    Kinetic modeling of photocatalytic degradation of Acid Red 27 in
    UV/TiO2 process. Journal of photochemistry and photobiology A:
    Chemistry, 2004. 168(1–2): p. 39-45.
    50. Landry, C. C., J. Lockwood, and A. R. Barron, Synthesis of chalcopyrite
    semiconductors and their solid solutions by microwave irradiation.
    Chemistry of materials, 1995. 7(4): p. 699-706.

    QR CODE
    :::