跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃益韋
Yi-wei huang
論文名稱: 奈米晶粒矽 P-I-N 太陽能電池
Nanocrystalline Si P-I-N Solar Cell
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 英文
論文頁數: 40
中文關鍵詞: 太陽能電池奈米晶粒矽
外文關鍵詞: Nanocrystalline Si, Solar Cell
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是研製奈米晶粒矽 (nc-Si:H) p-i-n 太陽能電池。首先是利用四種不同的製程方法製備所要的nc-Si:H薄膜: (1)在PECVD系統的陰極加裝不銹鋼網; (2) 先在基板上成長一層a-Si:H緩衝層,再沉積nc-Si:H薄膜; (3) 先使用氫電漿處理a-Si:H緩衝層後,再沉積nc-Si:H薄膜; (4) 用氫氣稀釋源氣體SiH4的方式沉積nc-Si:H薄膜。我們也使用微拉曼光譜儀 (micro-Raman spectroscopy)、X光繞射儀 (XRD) 及場發射掃描式電子顯微鏡(FE-SEM) 等儀器分析各nc-Si:H薄膜的結晶度。測量結果顯示,先在基板上沉積一層緩衝層,再用氫電漿處理緩衝層的表面,而後配合適當的SiH4濃度,可沉積出較佳的矽奈米晶粒 (nc-Si:H) 薄膜。
    再者,我們也利用上述較佳的製程參數,製備了二種不同結構的太陽能電池並量測其短路電流、開路電壓、填充因子及轉換效率。第一個元件的結構是Al / n-a-Si:H / i-a-Si:H / p-a-SiC:H / ITO /glass,另一個元件的結構為Al / n-a-Si:H / i-nc-Si:H / i-a-Si:H ( buffer layer )/ i-a-Si:H / p-a-SiC:H / ITO /glass。實驗結果顯示,在AM1.5之下,前者有比較好的轉換效率 (1.08%) ,而後者具略高的填充因子 (0.278)。


    In this thesis, the fabrication process and performance of the nanocrystalline silicon (nc-Si) p-i-n solar cells was studied. Firstly, the nc-Si:H films were deposited with a PECVD (plasma-enhanced chemical vapor deposition) system, by employing four different process techniques: (1) attaching a stainless steel mesh to cathode of the PECVD system, (2) an a-Si:H buffer layer was deposited on the substrate before growing the nc-Si:H film, (3) applying additional in-situ H2-plasma treatment on the a-Si:H buffer layer before growing the nc-Si:H film, and (4) the SiH4 reaction gas was diluted in H2 ,and the crystallinity of the obtain films were compared. The nc-Si:H films were characterized with micro-Raman spectroscopy, X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). From the measurment results, it was concluded that depositing an a-Si:H buffer layer and then applying in-situ H2-plasma treatment on a-Si:H buffer layer could result in the better crystallinity of the grown nc-Si:H film.
    Then, two different structures of nc-Si:H p-i-n solar cell were fabricated and their characteristics such as the short-circuit current ( Isc ), open-circuit voltage ( Voc ),fill factor ( FF )and efficiency ( eff. ) were measured. For the device structures, one was Al / n-a-Si:H / i-a-Si:H / p-a-SiC:H / ITO (indium tin oxide) /glass and the other was Al / n-a-Si:H / i-nc-Si:H / i-a-Si:H ( buffer layer )/ i-a-Si:H / p-a-SiC:H / ITO /glass. The measured results showed that the former one had a higher efficiency (~ 1.08%) and the later one had a little higher FF (~ 0.278) under AM1.5.

    Table Captions…………………..……………………………………………….Ⅲ Figure Captions…………………………..…………………………...….……...Ⅳ Chapter 1 INTRODUCTION………..…………….……………1 Chapter 2 DEVICE OPERATION PRINCIPLES 2.1 Basic Principles of Solar Cell……………………………………….3 2.2 Fundamental Parameters of Solar Cell …………………………4 Chapter 3 EXPERIMENTAL PROCEDURES 3.1 Fabrication of nc–Si :H Film………………………………………8 3.1.1 Effect of a-Si:H buffer layer…………………………..……...…..9 3.1.2 Effect of stainless steel mesh…...…………………..…………….9 3.1.3 Effect of H2-plasma treatment on a-Si:H buffer layer…...…….9 3.1.4 Effect of hydrogen dilution…………………………..………....10 3.2 Device Fabrication…...……………………………………………..10 3.3 Measurement Techniques …...……………………………………11 3.3.1 Micro-Raman spectroscopy ……………………………………11 3.3.2 X-ray diffraction ( XRD ) ……………………………………...13 3.3.3 Field-emission scanning electron microscope ( FE - SEM ) …13 3.3.4 Solar Simulator…........................................................................13 Chapter 4 RESULTS AND DISCUSSION 4.1 Characterizations of nc-Si:H Films............................................21 4.1.1 Effect of a-Si:H buffer layer.......................................................21 4.1.2 Effect of stainless steel mesh .....................................................22 4.1.3 Effect of H2-plasma treatment on a-Si:H buffer layer............24 4.1.4 Effect of hydrogen dilution........................................................24 4.2 Characterizations of Solar Cells.................................................25 Chapter 5 CONCLUSION…………………………………..37 REFERENCES………………………………………………………...38

    [1] S. Veprek and V. Marecek, “The preparation of thin layers of Ge and
    Si by chemical hydrogen plasma transport,” Solid State Electron., Vol. 11, pp. 683-684 (1968).
    [2] C. I-Chun and W. Sigurd, “High hole and electron field effect mobility in Nanocrystalline silicon deposited at 150 ℃,” Thin Solid Films, Vol. 427, pp. 56-59 (2003).
    [3] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room temperature nanocrystalline silicon single-electron transistors,” Journal of Applied Physics, Vol. 94, pp. 633-637 (2003)
    [4] Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si:
    H film and its application to solar cells,” Jpn. J. Appl. Phys., Part 2, Vol. 21, pp. L586 (1986)
    [5] J. Nelson, “The physics of solar cells,” Imperial College Press, pp. 249 (2003).
    [6] 盧慶儒, “技術洞察-無所不在的發電技術 太陽能電池系列報導,” DIGITIMES專欄,(2006)
    [7] Y. Yamamoto, S. Suganuma, M. Ito, M. Hori, and T. Goto, “Effects of dilution gases on Si atoms and SiHx + (x = 0–3) ions in electron cyclotron resonance SiH4 plasmas,” Jpn. J. Appl. Phys., Part 1, Vol. 36, pp. 4664 (1997)
    [8] J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? ,” Appl. Phys. Lett. Vol. 65, pp.860 (1994)
    [9] W. Du, X. Liao, X. Yang, H. Povolny, X. Xiang, X. Deng, and K. Sun, “Hydrogenated nanocrystalline silicon p-layer in amorphous silicon n-i-p solar cells,” Solar Energy Materials & Solar Cells, Vol.90, pp 1098-1104 (2006)
    [10] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell’s performance,” M. S. Thesis, CYCU, Taiwan, R.O.C.,2005
    [11] 莊嘉琛, “太陽能工程. 太陽電池篇,” 全華圖書, (1997).
    [12] D. Das, M. Jana, K. Barua, S. Chattopashyay, and L. Chyong, “Correlation of electrical, thermal and structure properties of microcrystalline silicon thin films ,” Jpn. J. Appl. Phys., Part 2 Vol.41, pp. L229-L232 (2002)
    .
    [13] T. Kaneko, M. Wakagi, O. Ken-Ichi, and T. Minemura, “Change in crystalline morphologies of polycrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition SiF4+H2 gas mixture at 350℃,” Appl. Phys. Lett., Vol. 64, pp.1865-1867 (1994)
    [14] P. Alpuim, V. Chu, and J.P. Conde, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition,” J. Appl. Phys., Vol.86, pp.3812-3821 (1999)
    [15] G. Ambrosone, U. Coscia, S. Lettieri, P. Maddalena, and C. Minarini, “Optical, structural and electrical properties of μc-Si:H films deposited by SiH4+H2 ,” Materials Science and Engineering B, Vol.101, pp.236-241 (2003)
    [16] V. Paillard, P. Puech, R. Sirvin, S. Hamma, and P. Roca, “Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry,” J. Appl. Phys., Vol.90, pp.3276-3279 (2001)
    [17] H. Yuliang, Y. Chenzhong, C. Guangxu, W. Luchun, and L. Xiangna, “The structure and properties of nanosize crystalline silicon films,” J. Appl. Phys., Vol.75, pp.797-803 (1994)
    [18] C. Y. Lin, Y. K. Fang, S. F. Chen, C. S. Lin, T. H. Chou, S. B. Hwang, J. S. Hwang, and K. I. Lin, “Preferential coalescence of nanocrystalline silicon on different film substrates,” Journal of Non-crystalline Solids, Vol.352, pp.44-50 (2006)
    [19] M. D. Shieh, T. R. Yew, and C. Lee, “The kinetics of very low temperature (~300 ℃) silicon epitaxial growth by confined plasma enhanced chemical vapor depotsition,” J. Electrochem. Soc., Vol. 141, pp. 3584-3587 (1994)
    [20] Ti. R. Yu, “Design and fabrication of a-C:H and a-SiN:H alternating-current white thin-film light-emitting diodes,” M. S. Thesis, NCU, Taiwan, R.O.C.,2006
    [21] T. Arai and H. Shirai, “Study of effect of SiH4 gas heating during growth of hydrogenated microcrystalline silicon on SiO2 by plasma-enhanced chemical-vapor depositon,” J. Appl. Phys. Vol.80, pp.4976-4983 (1996)

    QR CODE
    :::