| 研究生: |
蘇孟婷 Meng-Ting Su |
|---|---|
| 論文名稱: |
室溫下抗壞血酸引發之粉末黏著與團聚現象 Powder Adhesion and Agglomeration Induced by Ascorbic Acid at the Room Temperature |
| 指導教授: |
曹恆光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 抗壞血酸 、粉末黏著 、超疏水 、油水分離 |
| 外文關鍵詞: | Ascorbic acid, Powder adhesion, Superhydrophobic, oil/water seperation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用抗壞血酸(ascorbic acid)具有之特殊黏著性(adhesion),嘗試將各種具不同特性之粉末黏著於高分子基材上(powder agglomeration),並藉由膠帶測試驗證粉末與基材間優異的黏著效果。根據粉末特性的不同,這種由抗壞血酸所引發的粉末黏著方法可以賦予基材表面各種所需的特性。將具有導電性之銀粉黏著於聚對苯二甲酸乙二酯(polyethylene terephthalate;PET)上,即可製備出具有撓曲特性之導電圖騰,其導電度達6 × 10-4 cm,與市售之導電銀膠相近;將具有疏水性質之粉末(polytetrafluoroethene;PTFE)黏著於PET基材上,即可製備出具有可撓曲特性之超疏水表面,其對水的接觸角可達161o且其超低接觸角遲滯的特性,即便僅8 l之液滴亦可在4o傾斜下快速滾走。並利用高速攝影機以及接觸角測量儀器,深入探討液滴於超疏水表面上之各種運動行為。除此之外,若將PTFE粉末黏著於濾紙上,將可製備出兼具超疏水且超親油特性之PTFE濾紙,並可應用於水面油汙清除以及油水分離之領域。最後,利用Lap-joint方法於兩PMMA板之間測試抗壞血酸之黏著效果並探討其黏著機制。結果顯示抗壞血酸之黏著效果可達4.49 MPa。利用改變不同實驗參數,如溶液的氧化程度、濃度、水分含量以及基材的粗糙度等,藉此來建立抗壞血酸溶液黏著機制的模型。綜言之,抗壞血酸優異的黏著性可歸咎於液體擴散與機械結合兩機制的協同作用。
The experiment is designed to adhere the several powders which possess the different properties respectively on the polymer substrates with the strong adhesion induced by ascorbic acid and uses the tap testing to examine the excellent adhesion performance between the powders and the substrates. According to the different properties of the powders, the powder adhesion method induced by ascorbic acid can be used to create the functionalized surface. It can manufacture the flexible conductive patterns by adhering the conductive silver powders to the polyethylene terephthalate(PET) substrate with ascorbic acid, and its resistivity can reach 6 × 10-4 cm which is similar with the commercial silver conductive paste. Also, it can manufacture the flexible superhydrophobic surfaces by adhering the hydrophobic polytetrafluoroethene(PTFE) powders to the PET. The contact angle on this superhydrophobic surface can reach 161o, and due to the low contact angle hysteresis the 8 l water drop can roll fast with the only 4o sliding angle. By using the high-speed video camera and the contact angle system, various kinds of the motion of the liquid dorp on the superhydrophobic surface can be studied. Otherwise, the superhydrophobic and superlipophilic filter can be manufactured by adhering the PTFE powders on the filter with ascorbic acid, and it can be applied on the removal of the oil pollution on the water surface and the oil/water separation field. Finally, the adhesion performance can be examine by the lap-joint test, and the adhesion mechanism of the ascorbic acid will also be studied by controlling the different parameter of the solution and the substrates. In summary, the excellent adhesion of the ascorbic acid can be attributed to the synergistic effect of the liquid diffusion and the mechanical interlock.
[1] W. Pietsch, Agglomeration processes: phenomena, technologies, equipment. Wiley-VCH, New York, USA (2008).
[2] G. Rowland, Adhesives and adhesion. Chem. Nz. 71, 17 (1998).
[3] J. Thornton, Adhesives and adhesion. Buffalo State College (2005).
[4] W. C. Wake, Theories of adhesion and uses of adhesives: a review. Polymer 19, 291-308 (1978).
[5] 顧繼友,膠接理論與膠接基礎,科學出版社,北京,中國 (2003)。
[6] C. L. Weidner and G. J. Crocker, Elastomeric Adhesion and Adhesives. Rubb. Chem. Technol. 33, 1323-1374 (1960).
[7] S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723-1732 (1940).
[8] A. Dąbrowski, Adsorption-From theory to practice. Adv. Colloid Interface Sci. 93, 135-224 (2001).
[9] S. S. Dukhin, G. Kretzschmar and R. Miller, Dynamics of adsorption at liquid interfaces: theory, experiment, application. Elsevier Science B. V., Amsterdam, Netherlands (1995).
[10] M. Iwamatsu and K. Horii, Capillary condensation and adhesion of two wetter surfaces. J. colloid interface sci. 182, 400-406 (1996).
[11] S. M. Skinner, L. S. Robert and J. E. Rutzler Jr, Electrical phenomena in adhesion. I. Electron atmospheres in dielectrics." J. Appl. Phys. 24, 438-450 (1953).
[12] J. W. McBain and D. G. Hopkins, On adhesives and adhesive action. J. Phys. Chem. 29, 188-204 (1925).
[13] B. V. Deryagin and N. A. Krotova, Electrical theory of adhesion of films to solid surfaces and its experimental foundation. Usp. Fiz. Nauk. 36, 387-406 (1948).
[14] M. Hermansson, The DLVO theory in microbial adhesion. Colloids Surf. B: Biointerfaces 14, 105-119 (1999).
[15] B. V. Deryagin, Problems of adhesion. Prog. Surf. Sci. 45, 223-231 (1994).
[16] S. S. Voiutskii, Autohesion and adhesion of high polymers. Wiley-VCH, New York, USA (1963).
[17] S. S. Voyutskiĭ, The diffusion theory of adhesion. Rubb. Chem. Technol. 33, 748-756 (1960).
[18] S. S. Voyutskii and V. L. Vakula, The role of diffusion phenomena in polymer‐to‐polymer adhesion. J. Appl. Polym. Sci. 7, 475-491 (1963).
[19] A. J. Kinloch, Adhesion and adhesives: science and technology. Springer-Science & Business Media, Berlin, Germany (2012).
[20] S. R. Hartshorn, Structural adhesives: chemistry and technology. Springer Science & Business Media, Berlin, Germany (2012).
[21] J. G. Kirkwood and P. B. Frank, The statistical mechanical theory of surface tension. J. Chem. Phys. 17, 338-343 (1949).
[22] D. E. Packham, The mechanical theory of adhesion-Changing perceptions 1925-1991. J. Adhesion 39, 137-144 (1992).
[23] D. E. Packham, Chapter 4. The mechanical theory of adhesion, Handbook of adhesive technology, Marcel Dekker, New York, USA (2003).
[24] D. E. Packham, The mechanical theory of adhesion–A seventy year perspective and its current status. First International Congress on Adhesion Science and Technology. (1998)
[25] G. P. Anderson, S. J. Bennett and K. L. Devries, Analysis and testing of adhesive bonds. NTRS, 273 (1977).
[26] E. M. Liston and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhesion Sci. Tech. 7, 1091-1127 (1993).
[27] E. L. Florin, T. M. Vincent and E. G. Hermann, Adhesion forces between individual ligand-receptor pairs. Science 264,415-417 (1994).
[28] W. C. Wake, The rheology of adhesives. Adhesion,191-206 (1961).
[29] K. L. Mittal, Adhesion aspects of metallization of organic polymer surfaces. J. Vac. Sci. Technol., 13, 19-25 (1976).
[30] C. J. Wu, S. M. Chen, Y. J. Sheng and H. K. Tsao, Anti-oxidative copper nanoparticles and their conductive assembly sintered at room temperature. J. Taiwan Inst. Chem. Eng. 45, 2719-2724 (2014).
[31] C. J. Wu, S. L. Cheng, Y. J. Sheng and H. K. Tsao, Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor. RSC Adv. 5, 53275-53279 (2015).
[32] J. Xiong, Y. Wang, Q Xue and X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem.13, 900-904 (2011).
[33] C. J. Wu, Y. J. Sheng and H. K. Tsao, Copper conductive lines on flexible substrates fabricated at room temperature. J. Mater. Chem. C 4, 3274-3280 (2016).
[34] P. G. de Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena, Springer, New York, USA (2004).
[35] F. M. Chang, S. J. Hong, Y. J. Sheng and H. K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects." Appl. Phys. Letters 95, 064102 (2009).
[36] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114-4119 (2008).
[37] J. S. Rowlinson and B. Widom, Molecular theory of capillarity. The international series of monographs on chemistry. Clarendon (1982).
[38] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[39] A. B. D. Cassie and S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
[40] R. E. Johnson Jr and R.H. Dettre, Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J. phys. chem. 68, 1744-1750 (1964).
[41] J. F. Joanny, P. G. de Gennes, A model for contact angle hysteresis. J. Chem. Phys. 81, 552-562 (1984).
[42] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng and H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27, 6890-6896 (2011).
[43] E. Rame, The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. colloid interface sci. 185, 245-251 (1997).
[44] Standard, A. S. T. M., D1002-10. Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (Metal-to-Metal). West Conshohocken, PA: ASTM International. doi: 10.1520/D1002-10."
[45] S. Wang, M. Li and Q. Lu, Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interface 2, 677-683 (2010).
[46] C. C. Chang, C. J. Wu, Y. J. Sheng and H. K. Tsao, Air pocket stability and the imbibition pathway in droplet wetting. Soft matter 11, 7308-7315 (2015).
[47] A. G. Gaonkar and A. McPherson, Ingredient interactions: effects on food quality. CRC Press, New York, USA (2005).