| 研究生: |
胡雅涵 Ya-Han Hu |
|---|---|
| 論文名稱: |
在多重支持度下有效率的挖掘與維護關聯規則 An Efficient Algorithm for Discovery and Maintenance of Frequent Patterns with Multiple Minimum Supports |
| 指導教授: |
陳彥良
Yen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 頻繁物件集 、關聯規則維護 、多重門檻值 、多重支持度 、FP-tree |
| 外文關鍵詞: | Incremental mechanism, FP-tree, Multiple Minimum Supports, Association Rules, Data Mining |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用多重門檻值來進行關聯規則挖掘是一項相當重要且符合現實生活的資料採礦方法,相對於傳統單一門檻值的關聯規則挖掘,它允許使用者可以針對每個不同商品設定不同的門檻值,以反映真實世界中購買各種商品頻率不一的問題。以往Liu曾提出MSapriori演算法來挖掘多重門檻值下的頻繁項目集,然而由於其所採取的是Apriori-based的方法而導致效率不佳。在本篇論文中,我們提出了一種與FP-tree相似的結構與方法(稱為MIS-tree)來進行多重門檻值下的頻繁項目集挖掘,實驗結果顯示其效率較傳統MSapriori演算法好上許多。另外,有鑑於實務上應用多重門檻值的資料挖掘方法時,使用者必須多次調整每個商品的門檻值才能找到滿足起所需的頻繁項目集,我們在此也提出了一個維護MIS-tree的方法,讓使用者在調整完各個商品的門檻值後不需要再重新掃瞄資料庫而直接去調整已存在的MIS-tree,如此可以省下許多的執行時間。
Mining association rules with multiple minimum supports is an important generalization of the association rule mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items and their varied frequencies in the database. In Liu’s paper, an Apriori-based algorithm, named MSapriori, is developed to mine all frequent item sets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent item sets. We evaluate the performance of the algorithm using both synthetic datasets and real datasets, and the results show that the CFP-growth algorithm is much more efficient and scalable than the MSapriori algorithm. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items’ supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our MIS-tree maintenance algorithm achieves dramatic saving in computation when tuning supports.
[1] Agrawal, R. and Srikant, R. “Fast algorithms for mining association rules.” VLDB-94, 1994.
[2] Bing Liu, Wynne Hsu, Yiming Ma. Mining Association Rules with Multiple Minimum Supports. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-99, poster), August 15-18, 1999, San Diego, CA, USA.
[3] C. Aggarwal and P. Yu. Online generation of association rules. In Proc. Of 14th ICDE, 1998
[4] D. W. Cheung, V. T. Ng, and B. W. Tam, “Maintenance of discovered association rules in large databases: An incremental update technique”, in Proceeding of the 12th IEEE International Conference on Data Engineering(ICDE-96), New Orleans, Louisana, U.S.A., March 1996, pp.106-114.
[5] Han, J. and Fu, Y. “Discovery of multiple-level association rules from large
databases.” VLDB-95.
[6] J. Han, J. Pei, Y. Yin, “Mining frequent patterns without candidate generation”, Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data, Dallas, TX, 2000.
[7] Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., and Zheng, Z. KDD-cup 2000 Organizers’ Report: Peeling the Onion, SIGKDD Explosion 2(2), 2000, 86-93.
[8] K. K. Loo, Chi Lap Yip and Ben Kao and David Cheung. A lattice-based approach for I/O efficient association rule mining. Information Systems, Volume 27, Issue 1, Pages 41-74, March, 2002.
[9] Lee, W., Stolfo, S. J., and Mok, K. W. “Mining audit data to build intrusion detection models.” KDD-98.
[10] Mannila, H. “Database methods for data mining.” KDD-98 tutorial, 1998.
[11] Ming-Cheng Tseng, Wen-Yang Lin: Mining Generalized Association Rules with Multiple Minimum Supports. DaWaK 2001: 11-20
[12] M.Klemettinen, H.Mannila, P. Ronkainen, H.Toivinen, and A.I. Verkamo. “Finding interesting rules form large sets of discovered association rules”. In CIKM’94, pp.401-408.
[13] R.Feldman, Y. Aumann, A. Amir, and H. Manila. Efficient algorithm for discovering frequent sets in incremental databases. In 2nd SIGKDD workshop DMKD, 1997
[14] S. Thomas, S.Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm for the incremental updation of association rules in large database. In Proc. KDD, 1997.