| 研究生: |
Hendriquita Karonsih Widyapsari Hendriquita Karonsih Widyapsari |
|---|---|
| 論文名稱: | The Preliminary Study on Rheological Behavior of Polymer Modified Warm Mix Asphalt in Taiwan |
| 指導教授: |
Chen Shihuang
Shih-Huang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 溫拌瀝青、聚合物、車轍和疲勞 、溫拌瀝青 、聚合物 、車轍和疲勞 |
| 外文關鍵詞: | Warm Mix Asphalt, polymer, rutting and fatigue., Warm Mix Asphalt, polymer, rutting and fatigue |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
淨零排放是一個被廣泛討論的話題,溫拌瀝青(WMA)預計也將在臺灣路面中得到應用。臺
灣氣候多雨、夏季炎熱、交通繁忙,享情況為全臺,帶來了巨大的挑戰。在這種情況下,車轍
和鱷魚裂縫是高速公路常見問題。而在瀝青中添加聚合物是解決這些問題的標準方法。許多路
面工程關注的是溫拌瀝青混凝土是否可以與多種聚合物混合使用。本研究旨在評估不同聚合物
在臺灣溫拌瀝青混凝土中的性能。研究使用了五種添加劑,包括三種聚合物苯乙烯-丁二烯-苯
乙烯(SBS)、苯乙烯-乙烯-丁烯-苯乙烯(SEBS)與苯乙烯-異戊二烯-苯乙烯(SIS)。此外,
還使用了兩種溫拌瀝青混凝土添加劑:蠟S和化學添加劑Z。所用基質瀝青為AC-20,聚合物
添加量為 3-5%、蠟 S 添加量為 3%、化學品 Z添加量為 0.07%。本研究的另一個目標為確定
AC-20、聚合物和溫拌瀝青(WMA)添加劑的最佳組合。將對黏合劑進行物理和流變學測試,
以評估上述所有組合。研究結果如下:可知所有聚合物改質瀝青(PMB)皆能提升基質瀝青
AC-20 與溫拌瀝青(WMA)混合料的性能,且性能通常會隨聚合物摻量的增加而改變。流變
學測試顯示SBS C 具有最佳綜合性能、而化學添加劑 Z 的改善幅度相對有限。與 AC-20 加 蠟
S 相比、所有聚合物與 AC-20 及蠟 S 的組合均可使抗車轍性能提升約 21%,其中 4% SEBS 的
組合更可提升至 24%。在抗疲勞測試中,4% SBS C 與 AC-20 加 蠟 S 的組合能使疲勞壽命提升
約四倍,顯示所有聚合物皆有助於提高承載能力並增強瀝青的抗疲勞特性。然而,儘管 SBS C
加 蠟 S 兼具良好的抗車轍與抗疲勞性能,其黏結強度卻有所下降,表示黏結料與骨材界面的黏
附力減弱,可能導致更易受潮;化學添加劑 Z 則呈現相反的趨勢,在黏結性能方面表現較佳。
綜合性能評估顯示,4% SBS C 加 蠟 S 在臺灣高溫潮濕氣候與中、重交通乘載力下具最均衡表
現,但黏結強度仍是確保裂縫產生後抗水侵害能力的重要指標。因此,添加聚合物以提升溫拌
瀝青的抗車轍與抗疲勞能力具有明顯可行性與研究價值,值得進一步探討。
Net-zero emissions is a widely discussed topic, and warm-mix asphalt (WMA) is also expected
to be adopted in Taiwanese pavements. Taiwan's climate is typically rainy, with hot summers,
and heavy traffic presents a significant challenge across the island. Given these conditions,
rutting and fatigue are common issues on highways, and adding polymers to bitumen is a
standard method to address them. Many pavement engineers are concerned about whether
WMA can be used with various polymers together. The objective of this study is to evaluate the
performance of WMA with different polymers in Taiwan. Five polymers were used, including
three types of Styrene-Butadiene-Styrene (SBS), Styrene-Ethylene-Butylene-Styrene (SEBS),
and Styrene-Isoprene-Styrene (SIS). Additionally, two WMA additives, wax S and chemical Z,
were applied. The base asphalt used is AC-20; polymers were added at 3-5%, wax S at 3%, and
chemical Z at 0.07%. Another goal of the study is to identify the best combinations of AC-20,
polymers, and WMA additives. The physical and rheological tests of the binder will assess all
combinations. The findings show all PMBs improved both base and WMA binder properties,
with performance generally increasing with polymer dosage. Rheological results identified SBS
C as the best overall performance, while chemical Z contributed minimal improvement. PMBs
increased rutting resistance by up to 21% relative to AC-20 + wax S. Fatigue resistance under
standard moderate traffic improved up to fourfold with 4% SBS C + wax S. However, although
SBS + wax S improved rutting and fatigue, it reduced tenacity, indicating weaker binder
aggregate bonding and potential moisture susceptibility, whereas the chemical additive showed
the opposite trend. Overall, 4% SBS C + wax S provided the most balanced performance for
Taiwan’s climatic and traffic conditions, though tenacity remains essential for ensuring post
cracking moisture durability. Thus, it is feasible to add polymers to improve the rutting
resistance and fatigue performance of WMA, and further research is warranted.
[1] S. R. Omranian, M. O. Hamzah, L. Gungat, and S. Y. Teh, “Evaluation of asphalt mixture behavior incorporating warm mix additives and reclaimed asphalt pavement,” Journal of Traffic and Transportation Engineering (English Edition), vol. 5, no. 3, pp. 181–196, Jun. 2018, doi: 10.1016/J.JTTE.2017.08.003.
[2] A. Abdelrahman, K. S. K. Faisal, A. Ayman, E. Mohamed, M. Yusuf, and N. Munir, “Compactability and Performance of Warm-Mix Additives at Lower Than Traditional Compaction Temperatures,” Journal of Materials in Civil Engineering, vol. 35, no. 12, p. 04023475, Dec. 2023, doi: 10.1061/JMCEE7.MTENG-16309.
[3] B. Sengoz, A. Topal, and C. Gorkem, “Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives,” Constr Build Mater, vol. 43, pp. 242–252, 2013, doi: 10.1016/j.conbuildmat.2013.02.026.
[4] G. Cheraghian et al., “Warm mix asphalt technology: An up to date review,” J Clean Prod, vol. 268, p. 122128, Sep. 2020, doi: 10.1016/J.JCLEPRO.2020.122128.
[5] A. V. Kataware and D. Singh, “Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance,” Constr Build Mater, vol. 146, pp. 436–444, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.043.
[6] M. Sukhija, V. P. Wagh, and N. Saboo, “Development of workability based approach for assessment of production temperatures of warm mix asphalt mixtures,” Constr Build Mater, vol. 305, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124808.
[7] J. S. Daniel, M. Medeiros, H. Bolton, and W. Meagher, “AN EVALUATION OF THE MOISTURE SUSCEPTIBILITY OF WARM MIX ASPHALT MIXTURES New Hampshire Department of Transportation, 2010.
[8] Y. R. Kim, J. Zhang, and H. Ban, “Moisture damage characterization of warm-mix asphalt mixtures based on laboratory-field evaluation,” Constr Build Mater, vol. 31, pp. 204–211, Jun. 2012, doi: 10.1016/j.conbuildmat.2011.12.085.
[9] M. A. Dalhat and K. Al-Adham, “Review on laboratory preparation processes of polymer modified asphalt binder,” Apr. 01, 2023, KeAi Communications Co. doi: 10.1016/j.jtte.2023.01.002.
[10] M. R. Pouranian, M. A. Notani, M. T. Tabesh, B. Nazeri, and M. Shishehbor, “Rheological and Environmental Characteristics of Crumb Rubber Asphalt Binders Containing Non-Foaming Warm Mix 2 Asphalt Additives.”
[11] R. K. Lakshmi, A. M. Fuad, S. Okan, A.-N. Nasser, and M. Eyad, “Rheological, Thermal, and Chemical Evaluation of Asphalt Binders Modified Using Crumb Rubber and Warm-Mix Additive,” Journal of Materials in Civil Engineering, vol. 34, no. 5, p. 04022049, May 2022, doi: 10.1061/(ASCE)MT.1943-5533.0004194.
[12] A. Behnood and M. Modiri Gharehveran, “Morphology, rheology, and physical properties of polymer-modified asphalt binders,” Mar. 01, 2019, Elsevier Ltd. doi: 10.1016/j.eurpolymj.2018.10.049.
[13] H. Li, C. Cui, A. A. Temitope, Z. Feng, G. Zhao, and P. Guo, “Effect of SBS and crumb rubber on asphalt modification: A review of the properties and practical application,” Oct. 01, 2022, KeAi Communications Co. doi: 10.1016/j.jtte.2022.03.002.
[14] G. Polacco, A. Muscente, D. Biondi, and S. Santini, “Effect of composition on the properties of SEBS modified asphalts,” Eur Polym J, vol. 42, no. 5, pp. 1113–1121, May 2006, doi: 10.1016/j.eurpolymj.2005.11.024.
[15] H. H. Kim, M. Mazumder, M. S. Lee, and S. J. Lee, “Laboratory Evaluation of SBS Modified Asphalt Binder Containing GTR, SIS, and PE,” Advances in Civil Engineering, vol. 2020, 2020, doi: 10.1155/2020/8830622.
[16] G. Ferrotti, E. Mancinelli, G. Passerini, and F. Canestrari, “Comparison of energy and environmental performance between warm and hot mix asphalt concrete production: A case study,” Constr Build Mater, vol. 418, Mar. 2024, doi: 10.1016/j.conbuildmat.2024.135453.
[17] C. Rodezno et al., “WARM-MIX ASPHALT TECHNOLOGIES STATE OF THE KNOWLEDGE AND BEST PRACTICES,” Greenbelt, Apr. 2025.
[18] P. Mirzababaei, “Effect of zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations,” Constr Build Mater, vol. 116, pp. 403–412, Jul. 2016, doi: 10.1016/J.CONBUILDMAT.2016.04.143.
[19] E. Adly, S. H. Chen, P. Aditana, and W. Widodo, “Laboratory test of physical, rheological, and chemical characteristics of aging binder modified with ZycoTherm and Evotherm,” in E3S Web of Conferences, EDP Sciences, Jan. 2024. doi: 10.1051/e3sconf/202447601038.
[20] N. Darshan and A. V. Kataware, “Exploring different approaches to understand effect of WMA modification on mixing and compaction temperatures of asphalt binders: A laboratory study,” Constr Build Mater, vol. 458, Jan. 2025, doi: 10.1016/j.conbuildmat.2024.139562.
[21] F. H. Khairuddin, M. Y. Alamawi, N. I. M. Yusoff, K. H. Badri, H. Ceylan, and S. N. M. Tawil, “Physicochemical and thermal analyses of polyurethane modified bitumen incorporated with Cecabase and Rediset: Optimization using response surface methodology,” Fuel, vol. 254, Oct. 2019, doi: 10.1016/j.fuel.2019.115662.
[22] N. Che Mat, R. Putra Jaya, N. Abdul Hassan, H. Md Nor, M. M. A Aziz, and C. N. Che Wan, “Properties of asphaltic concrete containing sasobit ®,” J Teknol, vol. 71, no. 3, pp. 27–31, 2014.
[23] J. Gao, K. Yan, W. He, S. Yang, and L. You, “High temperature performance of asphalt modified with Sasobit and Deurex,” Constr Build Mater, vol. 164, pp. 783–791, Mar. 2018, doi: 10.1016/j.conbuildmat.2017.12.164.
[24] A. Behnood, M. M. Karimi, and G. Cheraghian, “Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders,” Clean Eng Technol, vol. 1, p. 100028, Dec. 2020, doi: 10.1016/J.CLET.2020.100028.
[25] Y. Zhang, Q. Song, Q. Lv, and H. Wang, “Influence of different polyethylene wax additives on the performance of modified asphalt binders and mixtures,” Constr Build Mater, vol. 302, p. 124115, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124115.
[26] S. Hinislioglu and E. Agar, “Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix,” Mater Lett, vol. 58, no. 3–4, pp. 267–271, Jan. 2004, doi: 10.1016/S0167-577X(03)00458-0.
[27] Andreas. Loizos, Advanced testing and characterization of bituminous materials : proceedings of the 7th International RILEM Symposium ATCBM09 on Advanced Testing and Characterization of Bituminous Materials, Rhodes, Greece, 229 May, 2009. CRC Press/Balkema ; Taylor & Francis [distributor], 2009.
[28] A. Jamshidi, M. O. Hamzah, and Z. You, “Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art,” 2013, Elsevier Ltd. doi: 10.1016/j.conbuildmat.2012.08.015.
[29] S. Kumlai, P. Jitsangiam, and H. Nikraz, “Assessments of moisture damage resistance of asphalt concrete mixtures and asphalt mastic with various mineral fillers,” Transportation Engineering, vol. 7, p. 100106, Mar. 2022, doi: 10.1016/J.TRENG.2022.100106.
[30] F. Xiao and S. N. Amirkhanian, “Effects of liquid antistrip additives on rheology and moisture susceptibility of water bearing warm mixtures,” Constr Build Mater, vol. 24, no. 9, pp. 1649–1655, Sep. 2010, doi: 10.1016/J.CONBUILDMAT.2010.02.027.
[31] Q. Qin, M. J. Farrar, A. T. Pauli, and J. J. Adams, “Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders,” Fuel, vol. 115, pp. 416–425, Jan. 2014, doi: 10.1016/J.FUEL.2013.07.033.
[32] Y. Yıldırım, “Polymer modified asphalt binders,” Construction and Building Materials - CONSTR BUILD MATER, vol. 21, pp. 66–72, Dec. 2007, doi: 10.1016/j.conbuildmat.2005.07.007.
[33] Q. Yang, J. Lin, X. Wang, D. Wang, N. Xie, and X. Shi, “A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties,” Cleaner Materials, vol. 12, p. 100255, Jun. 2024, doi: 10.1016/J.CLEMA.2024.100255.
[34] D. Ragni, G. Ferrotti, X. Lu, and F. Canestrari, “Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA,” Mater Des, vol. 160, pp. 514–526, Dec. 2018, doi: 10.1016/j.matdes.2018.09.042.
[35] P. Raghu, C. K. Nere, and R. N. Jagtap, “Effect of Styrene-Isoprene-Styrene, Styrene-Butadiene-Styrene, and Styrene-Butadiene-Rubber on the Mechanical, Thermal, Rheological, and Morphological Properties of Polypropylene/Polystyrene Blends,” 2003.
[36] LCY Elastomers Corp., “Globalprene Styrene-Butadiene block copolymer 3411.” Accessed: Jul. 22, 2025. [Online]. Available: https://www.lcycic.com/en/product/performance-materials/thermoplastic-elastomers/sbs-noe
[37] LCY Elastomers Corp., “Globalprene Styrene-Butadiene block copolymer 3501.” Accessed: Jul. 22, 2025. [Online]. Available: https://www.lcycic.com/en/product/performance-materials/thermoplastic-elastomers/sbs-noe
[38] LCY Elastomers Corp., “Globalprene Styrene-Butadiene block copolymer 3710.” Accessed: Jul. 22, 2025. [Online]. Available: https://www.lcycic.com/en/product/performance-materials/thermoplastic-elastomers/sbs-noe
[39] “Globalprene Styrenic Bloc Copolymer, 2024, Huizhou LCY Elastomers Corps”.
[40] S. Mahida, Y. Shah, S. Sharma, and P. Mehta, “A review on polymers additives in flexible pavement,” J Mater Sci, vol. 58, pp. 1–18, Mar. 2023, doi: 10.1007/s10853-023-08380-z.
[41] LCY Elastomers Corp., “Globalprene Styrene-Ethylene/Butylene block copolymer 9552.” Accessed: Jul. 22, 2025. [Online]. Available: https://www.lcycic.com/en/product/performance-materials/thermoplastic-elastomers/sebs
[42] LCY Elastomers Corp., “Globalprene Styrene-Isoprene block copolymer 5516.” Accessed: Jul. 22, 2025. [Online]. Available: https://www.lcycic.com/en/product/performance-materials/thermoplastic-elastomers/sis
[43] K. Polat, I. Orujalipoor, S. Ide, and M. Şen, “Nano and microstructures of SEBS/PP/wax blend membranes: SAXS and WAXS analyses,” Journal of Polymer Engineering, vol. 35, no. 2, pp. 151–157, Mar. 2015, doi: 10.1515/polyeng-2014-0093.
[44] S. Liu, J. Qiu, L. Han, J. Luan, X. Ma, and W. Chen, “Effect of SEBS Molecular Structure and Formula Composition on the Performance of SEBS/PP TPE for Automotive Interior Skin,” Polymers (Basel), vol. 15, no. 12, Jun. 2023, doi: 10.3390/polym15122753.
[45] H. Han, G. Tian, Q. Gao, H. Hu, J. Zhao, and J. Li, “Wall slip of styrene-isoprene-styrene (SIS) triblock copolymer induced by micro elastic phase,” Polymer (Guildf), vol. 209, Nov. 2020, doi: 10.1016/j.polymer.2020.122990.
[46] S. S. Islam, S. K. Singh, G. R. R.N., and S. S. Ravindranath, “Performance Deterioration of SBS-Modified Asphalt Mix: Impact of Elevated Storage Temperature and SBS Concentration of Modified Binder,” Journal of Materials in Civil Engineering, vol. 34, no. 3, Mar. 2022, doi: 10.1061/(asce)mt.1943-5533.0004092.
[47] S. S. Islam, S. K. Singh, G. R. R.N., and S. S. Ravindranath, “Performance Deterioration of SBS-Modified Asphalt Mix: Impact of Elevated Storage Temperature and SBS Concentration of Modified Binder,” Journal of Materials in Civil Engineering, vol. 34, no. 3, Mar. 2022, doi: 10.1061/(asce)mt.1943-5533.0004092.
[48] C. Zhuang, N. Li, W. Zhao, and C. Cai, “Effects of SBS Content on the Performance of Modified Asphalt,” IOP Conf Ser Mater Sci Eng, vol. 216, no. 1, Jul. 2017, doi: 10.1088/1757-899X/216/1/012028.
[49] C. Zhang, H. Wang, Z. You, J. Gao, and M. Irfan, “Performance test on Styrene-Butadiene-Styrene (SBS) modified asphalt based on the different evaluation methods,” Applied Sciences (Switzerland), vol. 9, no. 3, Jan. 2019, doi: 10.3390/app9030467.
[50] N. Saboo and P. Kumar, “Analysis of Different Test Methods for Quantifying Rutting Susceptibility of Asphalt Binders,” Journal of Materials in Civil Engineering, vol. 28, no. 7, Jul. 2016, doi: 10.1061/(asce)mt.1943-5533.0001553.
[51] S. Xu, Y. Fan, Z. Feng, Y. Ke, C. Zhang, and H. Huang, “Comparison of quantitative determination for SBS content in SBS modified asphalt,” Constr Build Mater, vol. 282, p. 122733, May 2021, doi: 10.1016/J.CONBUILDMAT.2021.122733.
[52] S. Chen, S. Zhuo, G. Xu, X. Chen, L. Yu, and Q. Xu, “Rheological and chemical indices to characterize long-term oxidative aging of SBS/rubber composite-modified asphalt binders,” Front Mater, vol. 11, no. March, pp. 1–10, 2024, doi: 10.3389/fmats.2024.1346754.
[53] F. Zhang and C. Hu, “The research for SBS and SBR compound modified asphalts with polyphosphoric acid and sulfur,” Constr Build Mater, vol. 43, pp. 461–468, 2013, doi: 10.1016/j.conbuildmat.2013.03.001.
[54] K. Shi et al., “Evolution of SBS-modified asphalt performance under aging and rejuvenation cycle conditions,” Constr Build Mater, vol. 416, p. 135156, Feb. 2024, doi: 10.1016/J.CONBUILDMAT.2024.135156.
[55] G. Wen, Y. Zhang, Y. Zhang, K. Sun, and Y. Fan, “Rheological characterization of storage-stable SBS-modified asphalts,” 2002. [Online]. Available: www.elsevier.com/locate/polytestMaterialCharacterisation
[56] H. Liu, Z. Zhang, Z. Tian, Y. Zhao, J. Yang, and W. Zhang, “UV aging resistance improvement of SBS modified asphalt binder by organic layered double hydroxide and naphthenic oil: Its preparation, properties and mechanism,” Constr Build Mater, vol. 449, p. 138404, Oct. 2024, doi: 10.1016/J.CONBUILDMAT.2024.138404.
[57] H. Yao, Q. Wang, Z. Zhang, X. Zhou, and Y. Cao, “Effect of styrene–butadiene–styrene triblock copolymer structure on the rheological properties of high content SBS polymer modified asphalts,” Constr Build Mater, vol. 400, p. 132738, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.132738.
[58] S. Zhang et al., “Properties investigation of the SBS modified asphalt with a compound warm mix asphalt (WMA) fashion using the chemical additive and foaming procedure,” J Clean Prod, vol. 319, Oct. 2021, doi: 10.1016/j.jclepro.2021.128789.
[59] Q. Yang, J. Lin, X. Wang, D. Wang, N. Xie, and X. Shi, “A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties,” Cleaner Materials, vol. 12, Jun. 2024, doi: 10.1016/j.clema.2024.100255.
[60] B. Liang, Y. Chen, F. Lan, and J. Zheng, “Evaluation of rheological and aging behavior of modified asphalt based on activation energy of viscous flow,” Constr Build Mater, vol. 321, Feb. 2022, doi: 10.1016/j.conbuildmat.2022.126347.
[61] F. Zhang and C. B. Hu, “The research for structural characteristics and modification mechanism of crumb rubber compound modified asphalts,” Constr Build Mater, vol. 76, 2015, doi: 10.1016/j.conbuildmat.2014.12.013.
[62] Y. Ke, J. Cao, S. Xu, C. Bian, C. Zhang, and X. Jia, “Storage stability and anti-aging performance of SEBS/ organ-montmorillonite modified asphalt,” Constr Build Mater, vol. 341, p. 127875, Jul. 2022, doi: 10.1016/J.CONBUILDMAT.2022.127875.
[63] B. Liang, Y. Chen, F. Lan, and J. Zheng, “Evaluation of rheological and aging behavior of modified asphalt based on activation energy of viscous flow,” Constr Build Mater, vol. 321, p. 126347, Feb. 2022, doi: 10.1016/J.CONBUILDMAT.2022.126347.
[64] S. Zapién-Castillo, J. L. Rivera-Armenta, M. Y. Chávez-Cinco, B. A. Salazar-Cruz, and A. M. Mendoza-Martínez, “Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite,” Constr Build Mater, vol. 106, pp. 349–356, Mar. 2016, doi: 10.1016/J.CONBUILDMAT.2015.12.099.
[65] N. Hemmati, J. Yun, M. Mazumder, M. S. Lee, and S. J. Lee, “Characterization of Sustainable Asphalt Binders Modified with Styrene–Isoprene–Styrene (SIS) and Processed Oil,” Sustainability (Switzerland), vol. 15, no. 12, Jun. 2023, doi: 10.3390/su15129464.
[66] R. K. Lakshmi, A. M. Fuad, S. Okan, A.-N. Nasser, and M. Eyad, “Rheological, Thermal, and Chemical Evaluation of Asphalt Binders Modified Using Crumb Rubber and Warm-Mix Additive,” Journal of Materials in Civil Engineering, vol. 34, no. 5, p. 04022049, May 2022, doi: 10.1061/(ASCE)MT.1943-5533.0004194.
[67] I. Binti Joohari and F. Giustozzi, “Oscillatory shear rheometry of hybrid polymer-modified bitumen using multiple stress creep and recovery and linear amplitude sweep tests,” Constr Build Mater, vol. 315, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125791.
[68] K. L. Roja, M. F. Aljarrah, O. Sirin, N. Al-Nuaimi, and E. Masad, “Rheological, Thermal, and Chemical Evaluation of Asphalt Binders Modified Using Crumb Rubber and Warm-Mix Additive,” Journal of Materials in Civil Engineering, vol. 34, no. 5, May 2022, doi: 10.1061/(asce)mt.1943-5533.0004194.
[69] R. Kumar, N. Saboo, P. Kumar, and S. Chandra, “Effect of warm mix additives on creep and recovery response of conventional and polymer modified asphalt binders,” Constr Build Mater, vol. 138, pp. 352–362, May 2017, doi: 10.1016/j.conbuildmat.2017.02.019.
[70] A. Julaganti, R. Choudhary, and A. Kumar, “Rheology of modified binders under varying doses of WMA additive–Sasobit,” Pet Sci Technol, vol. 35, no. 10, pp. 975–982, May 2017, doi: 10.1080/10916466.2017.1297827.
[71] G. Lu, S. Zhang, S. Xu, N. Dong, and H. Yu, “Rheological behavior of warm mix asphalt modified with foaming process and surfactant additive,” Crystals (Basel), vol. 11, no. 4, Apr. 2021, doi: 10.3390/cryst11040410.
[72] H. Kim, S.-J. Lee, and S. Amirkhanian, “Effects of warm mix asphalt additives on performance properties of polymer modified asphalt binders,” Canadian Journal of Civil Engineering, vol. 37, pp. 17–24, Dec. 2010, doi: 10.1139/L09-118.
[73] W. Dong et al., “Investigating the properties of a novel organic composite warm mix additive on SBS modified asphalt binder,” Constr Build Mater, vol. 444, p. 137885, Sep. 2024, doi: 10.1016/J.CONBUILDMAT.2024.137885.
[74] J. Li, Z. Wang, C. Chen, and Z. Zhang, “A novel reactive warm-mix rejuvenator and its effects of synergistic rejuvenation and temperature reduction on aged SBS modified bitumen,” Constr Build Mater, vol. 416, p. 135266, Feb. 2024, doi: 10.1016/J.CONBUILDMAT.2024.135266.
[75] H. Liu, Z. Zhang, J. Xie, Z. Gui, N. Li, and Y. Xu, “Analysis of OMMT strengthened UV aging-resistance of Sasobit/SBS modified asphalt: Its preparation, characterization and mechanism,” J Clean Prod, vol. 315, p. 128139, Sep. 2021, doi: 10.1016/J.JCLEPRO.2021.128139.
[76] W. Chen et al., “Preparation of functionalized MXene/carboxylated MWCNTs/SEBS-g-MAH multiscale modified asphalt with superior anti-aging performance,” Constr Build Mater, vol. 493, p. 143183, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.143183.
[77] D. Wang et al., “Optimizing aged asphalt performance: Innovative warm mix agent blends and rheological insights,” Constr Build Mater, vol. 416, p. 135107, Feb. 2024, doi: 10.1016/J.CONBUILDMAT.2024.135107.
[78] H. M. M. Maung, X. Zhang, X. Li, F. Liu, and S. H. Tun, “Enhancing the performance of polymer-modified asphalt binders using warm mix technology and additives,” Constr Build Mater, vol. 490, p. 142491, Sep. 2025, doi: 10.1016/J.CONBUILDMAT.2025.142491.
[79] A. V. Kataware and D. Singh, “Evaluation of intermediate temperature cracking performance of warm mix additive modified asphalt binders,” Constr Build Mater, vol. 184, pp. 165–176, Sep. 2018, doi: 10.1016/j.conbuildmat.2018.06.227.
[80] J. Kovinich, A. Kuhn, A. Wong, H. Ding, and S. A. M. Hesp, “Wax in Asphalt: A comprehensive literature review,” Constr Build Mater, vol. 342, p. 128011, Aug. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128011.
[81] X. Lu and P. Redelius, “Compositional and Structural Characterization of Waxes Isolated from Bitumens,” Energy & Fuels, vol. 20, no. 2, pp. 653–660, Mar. 2006, doi: 10.1021/ef0503414.
[82] “Specification for Penetration-Graded Asphalt Binder for Use in Pavement Construction,” May 01, 2020, ASTM International, West Conshohocken, PA. doi: 10.1520/D0946_D0946M-20.
[83] “Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method),” Jan. 01, 2021, ASTM International, West Conshohocken, PA. doi: 10.1520/D0070_D0070M-21.
[84] “Test Method for Ductility of Bituminous Materials,” ASTM International, West Conshohocken, PA. doi: 10.1520/D0113.
[85] “Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus),” Dec. 01, 2006, ASTM International, West Conshohocken, PA. doi: 10.1520/D0036-06.
[86] “Test Method for Toughness and Tenacity of Bituminous Materials,” Jun. 01, 2017, ASTM International, West Conshohocken, PA. doi: 10.1520/D5801-17.
[87] ASTM International, “D6084-97 Elastic Recovery,” PA, Aug. 2017. Accessed: Jul. 29, 2025. [Online]. Available: https://store.astm.org/d6084-97.html
[88] ASTM International, “D4402-87 Standard Test Method for Viscosity Determinations of Unfilled Asphalts Using the Brookfield Thermosel Apparatus 1,” Feb. 2021. [Online]. Available: www.astm.org
[89] “Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer,” Nov. 01, 2022, ASTM International, West Conshohocken, PA. doi: 10.1520/D2171_D2171M-22.
[90] “Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test),” May 01, 2022, ASTM International, West Conshohocken, PA. doi: 10.1520/D2872-22.
[91] US. Department of Transportation FHWA, “The Universal Simple Aging Test,” 2016. [Online]. Available: www.fhwa.dot.gov/research
[92] “Practice for Determining the Separation Tendency of Polymer from Polymer Modified Asphalt,” May 01, 2020, ASTM International, West Conshohocken, PA. doi: 10.1520/D7173-20.
[93] “Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR),” 2015. [Online]. Available: http://hm.digital.transportation.org/HM/34/HM-34/Part_II_Tests/Bituminous_Materials/t_024.aspx#t_024¬1?mode=print
[94] Z. Ye, W. Ren, H. Yang, Y. Miao, F. Sun, and L. Wang, “An improved asphalt penetration test method,” Materials, vol. 14, no. 1, pp. 1–12, Jan. 2021, doi: 10.3390/ma14010147.
[95] A. Suleiman Yero and M. Rosli Hainin, “Influence of Organic Wax on Bitumen Characteristics,” American J. of Engineering and Applied Sciences, vol. 4, no. 2, pp. 265–269, 2011.
[96] K. A. Ghuzlan, G. G. Al-Khateeb, W. Zeiada, A. Sukkari, M. W. Alani, and H. Ezzat, “Impact of Sasobit/Bio-oil Combination on The Performance of Asphalt Binders,” Transportation Engineering, vol. 20, Jun. 2025, doi: 10.1016/j.treng.2025.100340.
[97] T. Wang, F. Xiao, S. Amirkhanian, W. Huang, and M. Zheng, “A review on low temperature performances of rubberized asphalt materials,” Constr Build Mater, vol. 145, pp. 483–505, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.031.
[98] K. A. Ghuzlan and M. O. Al Assi, “Sasobit-Modified Asphalt Binder Rheology,” Journal of Materials in Civil Engineering, vol. 29, no. 9, Sep. 2017, doi: 10.1061/(asce)mt.1943-5533.0001996.
[99] S. T. Olalekan et al., “Durability of bitumen binder reinforced with polymer additives: Towards upgrading Nigerian local bitumen,” May 30, 2024, Elsevier Ltd. doi: 10.1016/j.heliyon.2024.e30825.
[100] S. Mahida, Y. Shah, S. Sharma, and P. Mehta, “A review on polymers additives in flexible pavement,” J Mater Sci, vol. 58, pp. 1–18, Mar. 2023, doi: 10.1007/s10853-023-08380-z.
[101] C. Oliviero Rossi, A. Spadafora, B. Teltayev, G. Izmailova, Y. Amerbayev, and V. Bortolotti, “Polymer modified bitumen: Rheological properties and structural characterization,” Colloids Surf A Physicochem Eng Asp, vol. 480, pp. 390–397, Sep. 2015, doi: 10.1016/j.colsurfa.2015.02.048.
[102] M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, and C. O. Rossi, “Bitumen and bitumen modification: A review on latest advances,” Feb. 20, 2019, MDPI AG. doi: 10.3390/app9040742.
[103] M. Lagos-Varas, D. Movilla-Quesada, A. C. Raposeiras, P. Monsalve-Cárcamo, and D. Castro-Fresno, “Rheological analyses of binders modified with triple combinations of Crumb-Rubber, Sasobit and Styrene-Butadiene-Styrene,” Case Studies in Construction Materials, vol. 19, Dec. 2023, doi: 10.1016/j.cscm.2023.e02235.
[104] T. Wang, R. Yang, A. Li, L. Chen, and B. Zhou, “Effects of Sasobit and its adding process on the performance of rubber asphalt,” Chem Eng Trans, vol. 51, pp. 181–186, 2016, doi: 10.3303/CET1651031.
[105] X. Yu, X. Liang, C. Chen, and G. Ding, “Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives,” Case Studies in Construction Materials, vol. 16, Jun. 2022, doi: 10.1016/j.cscm.2022.e00914.
[106] H. Singh, T. Chopra, S. Kamotra, S. Jain, and A. Kaur, “Performance evaluation of bituminous concrete mixes modified with SBS polymer and warm mix additive,” International Journal of Recent Technology and Engineering, vol. 8, no. 3, pp. 441–450, Sep. 2019, doi: 10.35940/ijrte.C4219.098319.
[107] A. Jamshidi, M. O. Hamzah, and M. Y. Aman, “Effects of Sasobit® content on the rheological characteristics of unaged and aged asphalt binders at high and intermediate temperatures,” Materials Research, vol. 15, no. 4, pp. 628–638, Jul. 2012, doi: 10.1590/S1516-14392012005000083.
[108] B. V. Kök, M. Yilmaz, and M. Akpolat, “Evaluation of the conventional and rheological properties of SBS + Sasobit modified binder,” Constr Build Mater, vol. 63, pp. 174–179, Jul. 2014, doi: 10.1016/j.conbuildmat.2014.04.015.
[109] K. Zhao et al., “A comprehensive study on the influence of Sasobit content on rheological properties and storage stability of CR/SBS composite-modified asphalt,” Constr Build Mater, vol. 463, p. 140066, Feb. 2025, doi: 10.1016/J.CONBUILDMAT.2025.140066.
[110] Y. Zhang, Q. Song, Q. Lv, and H. Wang, “Influence of different polyethylene wax additives on the performance of modified asphalt binders and mixtures,” Constr Build Mater, vol. 302, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124115.
[111] G. C. Hurley and B. D. Prowell, “EVALUATION OF SASOBIT® FOR USE IN WARM MIX ASPHALT,” 2005.
[112] D. Alothman, H. Gökçekuş, and S. I. Albrka Ali, “Rheological Properties of Hot and Warm Asphalt Binder Modified with Nanosilica,” Medziagotyra, vol. 28, no. 4, pp. 496–505, Dec. 2022, doi: 10.5755/j02.ms.30170.
[113] A. Eltwati, M. R. Hainin, F. Tarhuni, E. Jusli, and M. Alamri, “Effect of waste engine oil and warm mix additive on the physical, rheological, and short-term aging attributes of Styrene–Butadiene Rubber-modified asphalt binders,” Case Studies in Construction Materials, vol. 21, Dec. 2024, doi: 10.1016/j.cscm.2024.e03433.
[114] M. T. A. Sarkar and M. A. Elseifi, “Experimental evaluation of asphalt mixtures with emerging additives against cracking and moisture damage,” Journal of Road Engineering, vol. 3, no. 4, pp. 336–349, Dec. 2023, doi: 10.1016/J.JRENG.2023.07.001.
[115] X. Zhu, Y. Wang, M. Miljković, R. Li, and G. Hao, “Effects of polymer structure on the physicochemical and performance-related properties of SBS-modified asphalt binders subjected to short-term aging,” Constr Build Mater, vol. 411, p. 134446, Jan. 2024, doi: 10.1016/J.CONBUILDMAT.2023.134446.
[116] B. Vural Kok, B. Furtana Yalcin, M. Yilmaz, and E. Yalcin, “Performance evaluation of bitumen modified with styrene–isoprene-styrene and crumb rubber compound,” Constr Build Mater, vol. 344, p. 128304, Aug. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128304.
[117] J. Zhu, L. Li, C. Yin, X. Zhang, X. Zhou, and H. Wang, “Study on viscosity reduction mechanism of warm-mixed rubber modified asphalt: A green sustainable perspective,” Case Studies in Construction Materials, vol. 21, Dec. 2024, doi: 10.1016/j.cscm.2024.e03494.
[118] K. Zhao et al., “A comprehensive study on the influence of Sasobit content on rheological properties and storage stability of CR/SBS composite-modified asphalt,” Constr Build Mater, vol. 463, p. 140066, Feb. 2025, doi: 10.1016/J.CONBUILDMAT.2025.140066.
[119] M. Singh, K. Jain, S. K. Singh, and S. S. Kahlon, “Assessment of asphalt binder and mixes modified with Zycotherm and Sulphur,” Mater Today Proc, vol. 49, pp. 2217–2224, Jan. 2022, doi: 10.1016/J.MATPR.2021.09.322.
[120] D. Wang et al., “Rheological properties of asphalt binder modified with waste polyethylene: An interlaboratory research from the RILEM TC WMR,” Resour Conserv Recycl, vol. 186, p. 106564, Nov. 2022, doi: 10.1016/J.RESCONREC.2022.106564.
[121] K. A. Ghuzlan, G. G. Al-Khateeb, W. Zeiada, A. Sukkari, M. W. Alani, and H. Ezzat, “Impact of Sasobit/Bio-oil Combination on The Performance of Asphalt Binders,” Transportation Engineering, vol. 20, p. 100340, Jun. 2025, doi: 10.1016/J.TRENG.2025.100340.
[122] W. Huo, Y. Zhuang, Z. Wang, X. Kang, and R. Wang, “The Microscopic Mechanism and Rheological Properties of SBS-Modified Asphalt with Warm Mixing Fast-Melting,” Materials, vol. 16, no. 16, Aug. 2023, doi: 10.3390/ma16165690.
[123] M. Jalali and S. M. Mirabdolazimi, “Evaluation of the influence of induction factors (time and power), geometric characteristics and environmental conditions on the self-healing capability of warm mix asphalt,” Case Studies in Construction Materials, vol. 22, p. e04863, Jul. 2025, doi: 10.1016/J.CSCM.2025.E04863.
[124] A. Sukkari, G. Al-Khateeb, W. Zeiada, and H. Ezzat, “Evaluation of aging impact on rheological and chemical characteristics of crumb rubber-modified warm asphalt binders,” Sci Prog, vol. 107, no. 4, Oct. 2024, doi: 10.1177/00368504241300198.
[125] AASHTO Designation, “T 315Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR),” 2020. [Online]. Available: http://hm.digital.transportation.org/HM/34/HM-34/Part_II_Tests/Bituminous_Materials/t_024.aspx#t_024¬1?mode=print
[126] A. M. da Silva Lopes et al., “Impact of aging protocols on asphalt binder behavior: A laboratory and field study,” Case Studies in Construction Materials, vol. 19, Dec. 2023, doi: 10.1016/j.cscm.2023.e02629.
[127] C. Brovelli, M. Crispino, J. Pais, and P. Pereira, “Using polymers to improve the rutting resistance of asphalt concrete,” Constr Build Mater, vol. 77, pp. 117–123, Feb. 2015, doi: 10.1016/j.conbuildmat.2014.12.060.
[128] X. Zhu, M. Miljković, R. Li, G. Hao, X. Chen, and Y. Wang, “Non-linear viscoelastic and micromorphological properties of SBS-modified asphalt binder,” Mater Des, vol. 253, May 2025, doi: 10.1016/j.matdes.2025.113958.
[129] K. A. Ghuzlan and M. O. Al Assi, “Sasobit-Modified Asphalt Binder Rheology,” Journal of Materials in Civil Engineering, vol. 29, no. 9, Sep. 2017, doi: 10.1061/(asce)mt.1943-5533.0001996.
[130] Y. Mingjing, Y. Jinchao, W. Riran, G. Yajun, and M. Xiaopeng, “A Comprehensive Analysis of Fatigue and Healing Capacity of Sasobit Polymer-Modified Asphalt from Two Perspectives: Binder and FAM,” Journal of Materials in Civil Engineering, vol. 35, no. 3, p. 04022478, Mar. 2023, doi: 10.1061/(ASCE)MT.1943-5533.0004655.
[131] B. V. Kök, M. Yilmaz, and M. Akpolat, “Evaluation of the conventional and rheological properties of SBS + Sasobit modified binder,” Constr Build Mater, vol. 63, pp. 174–179, Jul. 2014, doi: 10.1016/j.conbuildmat.2014.04.015.
[132] P. Mirzababaei, “Effect of zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations,” Constr Build Mater, vol. 116, pp. 403–412, Jul. 2016, doi: 10.1016/j.conbuildmat.2016.04.143.
[133] B. V. Kök and M. Akpolat, “Effects of Using Sasobit and SBS on the Engineering Properties of Bitumen and Stone Mastic Asphalt,” Journal of Materials in Civil Engineering, vol. 27, no. 10, Oct. 2015, doi: 10.1061/(asce)mt.1943-5533.0001255.
[134] G. D. Airey, “Rheological properties of styrene butadiene styrene polymer modified road bitumens,” Fuel, vol. 82, no. 14, pp. 1709–1719, Oct. 2003, doi: 10.1016/S0016-2361(03)00146-7.
[135] M. Romero, S. Fernandes, M. Madalena, C. Forte, L. Figueiredo, and M. Leite, “Rheological Evaluation of Polymer-Modified Asphalt Binders,” 2008.
[136] B. V. Kök, M. Yilmaz, and M. Akpolat, “Evaluation of the conventional and rheological properties of SBS + Sasobit modified binder,” Constr Build Mater, vol. 63, pp. 174–179, Jul. 2014, doi: 10.1016/J.CONBUILDMAT.2014.04.015.
[137] M. Aurilio, P. Tavassoti, M. Elwardany, and H. Baaj, “Impact of Styrene-Butadiene-Styrene (SBS) content on asphalt Binder’s fatigue resistance at various aging levels using Viscoelastic Continuum Damage and fracture mechanics,” Constr Build Mater, vol. 305, p. 124627, Oct. 2021, doi: 10.1016/J.CONBUILDMAT.2021.124627.
[138] G. Polacco, A. Muscente, D. Biondi, and S. Santini, “Effect of composition on the properties of SEBS modified asphalts,” Eur Polym J, vol. 42, no. 5, pp. 1113–1121, May 2006, doi: 10.1016/J.EURPOLYMJ.2005.11.024.
[139] L. Shan, X. Qi, X. Duan, S. Liu, and J. Chen, “Effect of styrene-butadiene-styrene (SBS) on the rheological behavior of asphalt binders,” Constr Build Mater, vol. 231, p. 117076, Jan. 2020, doi: 10.1016/J.CONBUILDMAT.2019.117076.
[140] S. Z. Mohammady and D. M. Aldhayan, “Investigation of the dynamics of the various relaxation processes in SEBS block copolymer possessing low styrene fraction,” Journal of Saudi Chemical Society, vol. 25, no. 4, p. 101211, Apr. 2021, doi: 10.1016/J.JSCS.2021.101211.
[141] S. Ali Mojabi, A. Abdi Kordani, P. Hajikarimi, and M. Nazari, “Evaluating fracture performance of stone mastic asphalt with SBS and SEBS modifications,” Theoretical and Applied Fracture Mechanics, vol. 134, p. 104703, Dec. 2024, doi: 10.1016/J.TAFMEC.2024.104703.