跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾元慶
Yuan-Ching Tseng
論文名稱: 基於Autoformer與時序卷積網路建構預測剩餘失效時間的混合模型
A Hybrid Model Based on Autoformer and Temporal Convolutional Network for Remaining Useful Life Prediction
指導教授: 葉英傑
Ying-Chieh Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 48
中文關鍵詞: 預測與健康維護預測剩餘失效時間時序卷積網路Autoformer
外文關鍵詞: Prognostics Health Management, Autoformer, ime series forecasting
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當今工業和科技不斷進步的背景下,設備健康監測(PHM)和預測剩餘失效時間(RUL)成為了工業管理中至關重要的部分。準確地預測設備的剩餘失效時間有助於提高設備的可靠性、降低維護成本,並優化生產計劃。然而,傳統的 RUL 預測方法在面對複雜多變的時間序列數據時面臨一些挑戰。這包括對設備狀態變化的準確捕捉以及長期依賴關係的建模。在大數據和機器學習的時代,如何利用網路上多元的資料做進一步的研究是現今熱門的課題。本研究旨在解決傳統 Transformer 的注意力機制在長序列預測上難以發現可靠的時序依賴的問題,提高運算效率及記憶體使用的優化;提升對局部序列特徵的提取能力;降低異常值對時間序列的影響,建立有效的預測模型幫助企業降低風險,提高設備維護效率,減少停機時間。為達成這些目標,本研究提出了一個混合模型,結合了 Autoformer 模型、STL 時序分解方法和時序卷積網路。這些方法的結合將有助於更準確地預測設備的剩餘失效時間,提高設備管理效率和生產效率。


    In the context of today's industrial and technological advances, equipment health monitoring (PHM) and predicted remaining life (RUL) have become a critical part of industrial management. Accurately predicting the remaining life of equipment can help improve equipment reliability, reduce maintenance costs, and optimize production schedules. However, traditional RUL prediction methods face a number of challenges when dealing with complex and variable time-series data. These include accurately capturing changes in equipment state and modeling long-term dependencies. In the era of big data and machine learning, how to utilize the multifarious data on the Internet for further research is a hot topic nowadays. In this study, we aim to solve the problem that the traditional attention mechanism of Transformer is difficult to find reliable time series
    dependencies in long sequence prediction, to improve the computational efficiency and optimize the memory usage, to enhance the ability of extracting local sequence features,
    to reduce the impact of anomalies on time series, to build an effective prediction model to help enterprises to reduce the risk, to improve the efficiency of equipment maintenance,and to reduce the downtime. To achieve these goals, this study proposes a hybrid model that combines the Autoformer model, the STL time-series decomposition method, and the time-series convolutional network. The combination of these methods will help to predict the remaining life of equipment more accurately and improve the efficiency of
    equipment management and productivity.

    摘要 ........................................................... ii Abstract ....................................................... iii 目錄 ........................................................... iv 圖目錄 ......................................................... vi 表目錄 ........................................................ vii 第一章 緒論..................................................... 1 1.1 研究背景與動機........................................... 1 1.2 研究問題................................................. 2 1.3 研究目的................................................. 3 1.4 研究方法................................................. 3 1.5 研究架構................................................. 4 第二章 文獻回顧 ................................................. 5 2.1 剩餘失效時間預測相關研究................................. 5 2.2 Autoformer ............................................... 6 2.2.1 深度分解架構(Deep Decomposition Framework) .......... 7 2.2.2 自相關機制(Auto-Correlation Mechanism) ............... 8 2.3 STL 序列分解單元......................................... 9 2.4 時序卷積網路(Temporal Convolutional Network, TCN).......... 10 第三章 研究方法 ................................................ 13 3.1 模型設計 ................................................ 13 3.2 自相關機制(Auto-Correlation Mechanism) .................... 14 3.2.1 高效計算(Efficient computation)....................... 16 3.3 STL 序列分解單元 ........................................ 16 3.4 時序卷積網路(Temporal Convolutional Network, TCN).......... 19 3.4 .1 因果卷積(Causal Convolution) ....................... 19 3.4 .2 空洞卷積/膨脹卷積(Dilated Convolution) .............. 19 3.4 .3 殘差模塊(Residual block) ........................... 20 3.5 編碼器、解碼器.......................................... 19 第四章 實驗 .................................................... 23 4.1 原始資料 ................................................ 23 4.2 監測數據篩選與資料前處理 ................................ 25 4.2.1 監測數據篩選 ...................................... 25 4.2.2 資料前處理 ........................................ 27 4.3 評估指標................................................ 29 4-4 實驗設置................................................ 30 4-5 實驗結果................................................ 32 第五章 結論與未來方向 .......................................... 36 參考文獻 ....................................................... 37

    [1] Akaike, H. "Maximum likelihood identification of Gaussian autoregressive
    moving average models." Biometrika 60.2, 1973, 255-265.
    [2] Asadi, R., A. C. Regan. "A spatio-temporal decomposition based deep neural
    network for time series forecasting." Applied Soft Computing 87, 2020, 105963.
    [3] Bai, J.Z. Kolter, V. Koltun. "An empirical evaluation of generic convolutional and
    recurrent networks for sequence modeling." arXiv preprint
    arXiv:1803.01271, 2018.
    [4] Cleveland, R. B., W. S. Cleveland, J. E. McRae, I. Terpenning. "STL: A seasonaltrend decomposition." J. off. Stat 6.1, 1990, 3-73.
    [5] Fan, J., K. C. Yung, M. Pecht. "Physics-of-failure-based prognostics and health
    management for high-power white light-emitting diode lighting." IEEE
    Transactions on Device and Materials Reliability 11.3, 2011, 407-416.
    [6] Galar, D., U. Kumar, Y. Fuqing. "RUL prediction using moving trajectories
    between SVM hyper planes." 2012 Proceedings Annual Reliability and
    Maintainability Symposium., 2012, 1-6.
    [7] Guo, L., N. Li, F. Jia, Y. Lei, J. Lin. "A recurrent neural network based health
    indicator for remaining useful life prediction of bearings." Neurocomputing 240,
    2017, 98-109.
    [8] He, K., X. Zhang, S. Ren, J. Sun. "Deep residual learning for image
    recognition." Proceedings of The IEEE Conference on Computer Vision and
    Pattern Recognition., 2016, 770-778.
    [9] Hyndman, R. J., G. Athanasopoulos. Forecasting: Principles and Practice.
    OTexts, 2018.
    [10] Kacprzynski, G. J., A. Sarlashkar, M. J. Roemer, A. Hess, B. Hardman "Predicting
    remaining life by fusing the physics of failure modeling with diagnostics.
    " JOm 56, 2004, 29-35.
    [11] Keshun, Y., Q. Guangqi, G. Yingkui. "A 3D attention-enhanced hybrid neural
    network for turbofan engine remaining life prediction using CNN and Bi-LSTM
    models." IEEE Sensors Journal, 2023.
    [12] Kitaev, N., Ł. Kaiser, A. Levskaya. "Reformer: The efficient transformer." arXiv
    preprint arXiv:2001.04451, 2020.
    [13] Li, H., W. Zhao, Y. Zhang, E. Zio. "Remaining useful life prediction using multiscale deep convolutional neural network." Applied Soft Computing 89, 2020, 106-
    113.
    [14] Li, S., X. Jin, Y. Xuan, X. Zhou, W. Chen, Y. X. Wang, X. Yan. "Enhancing the
    locality and breaking the memory bottleneck of transformer on time series
    forecasting." Advances in Neural Information Processing Systems 32, 2019.
    [15] Li, S., X. Jin, Y. Xuan, X. Zhou, W. Chen, Y. X. Wang, X. Yan. "Enhancing the
    locality and breaking the memory bottleneck of transformer on time series
    forecasting." Advances in Neural Information Processing Systems 32, 2019.
    [16] Li, X., Q. Ding, J. Q. Sun. "Remaining useful life estimation in prognostics using
    deep convolution neural networks." Reliability Engineering & System Safety 172,
    2018, 1-11.
    [17] Li, X., Y. Xu, N. Li, B. Yang, Y. Lei. "Remaining useful life prediction with partial
    sensor malfunctions using deep adversarial networks." IEEE/CAA Journal of
    Automatica Sinica 10.1, 2022, 121-134.
    [18] Li, Y., S. Billington, C. Zhang, T. Kurfess, S. Danyluk, S. Liang. "Adaptive
    prognostics for rolling element bearing condition." Mechanical Systems and
    Signal Processing 13.1, 1999, 103-113.
    [19] Lin, Y., I. Koprinska, M. Rana. "Temporal convolutional attention neural networks
    for time series forecasting." 2021 International Joint Conference on Neural
    Networks (IJCNN), 2021,1-8
    [20] Liu, L., X. Song, Z. Zhou. "Aircraft engine remaining useful life estimation via a
    double attention-based data-driven architecture." Reliability Engineering &
    System Safety 221, 2022, 108330.
    [21] Miao, J., X. Li, J. Ye. "Predicting research of mechanical gyroscope life based on
    wavelet support vector." 2015 First International Conference on Reliability
    Systems Engineering (ICRSE)., 2015.
    [22] Mo, Y., Q. Wu, X. Li, B. Huang. "Remaining useful life estimation via
    transformer encoder enhanced by a gated convolutional unit." Journal of
    Intelligent Manufacturing 32.7, 2021, 1997-2006.
    [23] Nieto, P. J. G., E. García-Gonzalo, F. S. Lasheras, F. J. de Cos Juez. "Hybrid
    PSO–SVM-based method for forecasting of the remaining useful life for aircraft
    engines and evaluation of its reliability." Reliability Engineering & System
    Safety 138, 2015, 219-231.
    [24] Oppenheimer, C.H., K. A. Loparo. "Physically based diagnosis and prognosis of
    cracked rotor shafts." Component and Systems Diagnostics, Prognostics, and
    Health Management II. Vol. 4733. SPIE, 2002, 122-132.
    [25] Oreshkin, B. N., D. Carpov, N. Chapados, Y. Bengio. "N-BEATS: Neural basis
    expansion analysis for interpretable time series forecasting." arXiv preprint
    arXiv:1905.10437, 2019.
    [26] Papoulis, A. Random Variables and Stochastic Processes. McGraw Hill, 1965.
    [27] Parzen, E. "An approach to time series analysis." The Annals of Mathematical
    Statistics 32.4, 1961, 951-989.
    [28] Peddinti, V., D. Povey, S. Khudanpur. "A time delay neural network architecture
    for efficient modeling of long temporal contexts." Interspeech, 2015, 3214-3218.
    [29] Qin, Y., D. Song, H. Chen, W. Cheng, G. Jiang, G. Cottrell. "A dual-stage
    attention-based recurrent neural network for time series prediction." arXiv
    preprint arXiv:1704.02971, 2017.
    [30] Ramasso, E., A. Saxena. "Performance Benchmarking and Analysis of Prognostic
    Methods for CMAPSS Datasets." International Journal of Prognostics and Health
    Management 5.2, 2014, 1-15.
    [31] Ruan, D., Y. Wu, J. Yan, C. Gühmann. "Fuzzy-membership-based framework for
    task transfer learning between fault diagnosis and RUL prediction." IEEE
    Transactions on Reliability 72.3, 2022, 989-1002.
    [32] Sateesh Babu, G., P. Zhao, X. L. Li. "Deep convolutional neural network based
    regression approach for estimation of remaining useful life." Database Systems
    for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas,
    TX, USA, April 16-19, 2016, Proceedings, Part I 21. Springer International
    Publishing, 2016, 214-228.
    [33] Saxena, A., K. Goebel, D. Simon, N. Eklund. "Damage propagation modeling for
    aircraft engine run-to-failure simulation." 2008 international Conference on
    Prognostics and Health Management., 2008, 1-9.
    [34] Sen, R., H. F. Yu, I. S. Dhillon. "Think globally, act locally: A deep neural
    network approach to high-dimensional time series forecasting." Advances in
    Neural Information Processing Systems 32, 2019.
    [35] Taylor, S. J., B. Letham. "Forecasting at scale." The American Statistician 72.1,
    2018, 37-45.
    [36] Tian, Z. "An artificial neural network method for remaining useful life prediction
    of equipment subject to condition monitoring." Journal of Intelligent
    Manufacturing 23, 2012, 227-237.
    [37] Wang, D., K. L. Tsui, Q. Miao. "Prognostics and health management: A review of
    vibration based bearing and gear health indicators." IEEE Access 6, 2017, 665-
    676.
    [38] Wu, H., J. Xu, J. Wang, M. Long. "Autoformer: Decomposition transformers with
    auto-correlation for long-term series forecasting." Advances in Neural Information
    Processing Systems 34, 2021, 22419-22430.
    [39] Xu, X., Q. Wu, X. Li, B. Huang. "Dilated convolution neural network for remaining useful life prediction." Journal of Computing and Information Science
    in Engineering 20.2, 2020, 021004.
    [40] Yu, W., I. I. Y. Kim, C. Mechefske. "Remaining useful life estimation using a
    bidirectional recurrent neural network based autoencoder scheme." Mechanical
    Systems and Signal Processing 129, 2019, 764-780.
    [41] Zhang, W., G. Peng, C. Li, Y. Chen, Z. Zhang. "A new deep learning model for
    fault diagnosis with good anti-noise and domain adaptation ability on raw
    vibration signals." Sensors 17.2, 2017, 425.
    [42] Zhang, Y., R. Xiong, H. He, M. G. Pecht. "Long short-term memory recurrent
    neural network for remaining useful life prediction of lithium-ion batteries." IEEE
    Transactions on Vehicular Technology 67.7, 2018, 5695-5705.
    [43] Zhao, R., R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao. "Deep learning and its
    applications to machine health monitoring." Mechanical Systems and Signal
    Processing 115, 2019, 213-237.
    [44] Zhao, S., Y. Pang, J. Chen, J. Liu. "Prediction of remaining useful life of aircraft
    engines based on Multi-head Attention and LSTM." 2022 IEEE 6th Information
    Technology and Mechatronics Engineering Conference (ITOEC). Vol. 6., 2022,
    1530-1534.
    [45] Zheng, S., K. Ristovski, A. Farahat, C. Gupta. "Long short-term memory network
    for remaining useful life estimation." 2017 IEEE International Conference on
    Prognostics and Health Management (ICPHM)., 2017, 88-95
    [46] Zhou, H., S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang. "Informer:
    Beyond efficient transformer for long sequence time-series
    forecasting." Proceedings of The AAAI Conference on Artificial Intelligence. Vol.
    35. No. 12., 2021.

    QR CODE
    :::