| 研究生: |
張志宇 Chih-yu Chang |
|---|---|
| 論文名稱: |
具自我校正之高解析度抖動量測電路應用於高速串列傳輸系統 On-Chip High Resolution Jitter Measurement Circuit with Self-Calibration Technique for High-Speed Serial Link |
| 指導教授: |
鄭國興
Kuo-hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 時間放大電路 、抖動量測電路 、內建測試電路 |
| 外文關鍵詞: | time amplifier, jitter measurement, BIST |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體製程技術不斷的演進之下,積體電路已朝單晶片化的系統整合方式發展,當系統整合於同一晶片上時,電路在時序上的掌握就變得相當重要,若時脈的抖動量過大或具相位偏移時,會造成系統在操作上的錯誤。因此在系統上便會選擇鎖相迴路來當作參考時脈來源,但就目前單晶片化的趨勢與操作速度的提升,要直接對鎖相迴路的輸出時脈信號抖動量進行量測已變成相當困難,此外利用外部儀器量測不僅需花費高額的成本,且儀器所引發的雜訊也使得測試結果受到影響,基於上述理由,內建自我測試電路便因此而產生。
本論文提出的「具自我校正之高解析度抖動量測電路應用於高速串列傳輸系統」以提高量測解析度、減少面積消耗、降低製程變異影響為設計目標。以往量測電路皆需要一組額外信號來當作參考信號源且有元件不匹配的問題,本論文利用自我取樣的方法搭配游標尺環形振盪器的作法來消除參考信號源與電路不匹配的問題,同時也能降低面積的消耗,此外為了能量測到在高速串列傳輸系統中時脈信號的微小抖動量,在電路中再加上時間放大電路來增加量測的精準度,然而製程變異也會對量測結果造成影響,因此電路中額外再加上第一級自動校正電路與第二級校正電路來補償製程變異的影響。
本次抖動量測電路是利用UMC90nm 1P9M製程來設計,可量測到3GHz的時脈抖動量,整體電路的解析度為2.0ps,功率消耗約為11.43mW。
As the improvement of semiconductor technology, VLSI circuit has developed in a system on chip (SoC). When system integrated into a chip, the clock synchronous problem of SoC would become very important. If the clock jitter is excessive or phase deviation, the mistakes of system operation will be generated. In view of this problem, clock synchronization circuits such as PLLs and DLLs will be used the clock source. But on a tendency toward SoC system and high operating speed, it is difficult to measure the output clock jitter of the PLL circuit directly. In addition, using external measuring equipments not only need to take the high cost of equipment and noise caused by the test results also affected. For these reasons, the built-in self-test circuitry for clock jitter measurement can be produced.
This thesis on-chip high resolution jitter measurement circuit with self-calibration technique for high-speed serial link is proposed to improve the measurement resolution. It can reduce the measurement circuit area and reduce process variation effect. The conventional jitter measurement circuits need an additional signal as the reference source. In this thesis, the use of self-refereed method with vernier ring oscillator can eliminate the problems of the reference source. It also reduces the circuit mismatch and the chip area. In addition, in order to measure the tiny clock jitter in high-speed serial link, the proposed circuit uses the time amplifier circuit to increase the high accuracy. However, process variation will also influence the measure results. Therefore, the first auto-calibration and second calibration circuits are used to compensate the process variation.
This jitter measurement circuit is designed in UMC90nm 1P9M process. It can measure the 3GHz clock jitter. The resolution of the overall circuit is 2.0ps and power consumption is about 11.43mW.
[1] T. Wu, K. Mayaram, and U. Moon, “An On-chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE Journal Solid-State Circuits, vol. 42, no. 4, pp. 775-783, Apr. 2007.
[2] K. H. Cheng, S. Y. Jiang, and Z. S. Chen, “BIST for Clock Jitter Measurements,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 577-580, May 2003.
[3] T. Xia, Z. J. Chen, and S. Jia, “A Novel Jitter Measurement Method with Built-In Oscillation Test Structure for Phase Locked Loops,” IEEE Electron Devices and Solid-State Circuits, pp. 149-152, Dec. 2005
[4] J. Patrin and M. Li, “Characterizing Jitter Histograms for Clock and DataCom Applications,” Designcon, 2004.
[5] “Jitter in Clock Sources,” Vectron International.
[6] F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise,” IEEE Transactions on Circuits and Systems II, vol. 46, pp. 56-62, Jan. 1999.
[7] N. Soo, “Jitter Measurement Technique,” Pericom Application Brief AB36, Nov. 2000.
[8] “Understanding and Characterizing Timing Jitter,” Tektronix.
[9] C. Y. Chou, “On-Chip Jitter Measurement Circuits for Phase-Locked Loops,” MS. Thesis, National Tsing Hua University, Institute of Electronics Engineering, Taiwan, 2005.
[10] A. H. Chan and G. W. Robert, “A Jitter Characterization System Using a Component-Invariant Vernier Delay Line,” IEEE Transactions on VLSI System, vol. 12, pp. 79-94, Jan. 2001.
[11] B. Kaminska, “BIST means more measurement options for designers,” EDN Magazine, Dec. 2000.
[12] K. Ichiyama, M. Ishida, T. J. Yamaguchi, and M. Soma, “An On-Chip Delta-Time-to-Voltage Converter for Real-Time Measurement of Clock Jitter,” IEEE International Symposium on Circuits and Systems, pp. 2798-2801, May 2007.
[13] K. A. Taylor, B. Nelson, A. Chong, H. Lin, E. Chan, M. Soma, H. Haggag, J. Huard, and J. Braatz, “Special Issue on BIT CMOS Built-In Test Archetecture for High-Speed Jitter Measurement,” IEEE Transcations on Instrumentation and Measurement, vol. 54, pp. 975-987, Jun. 2005.
[14] M. A. Abas, G. Russell, and D. J. Kinniment, “Embedded High-Resolution Delay Measurement System Using Time Amplification,” IEEE Institution of Engineering of Technology Computers & Digital Techniques, pp. 77-86, Mar. 2007.
[15] T. Xia and J. C. Lo, “Time-to-Voltage Converter for On-Chip Jitter Measurement,” IEEE Transaction on Instrumentation and Measurement, vol. 52, pp. 1738-1748, Dec. 2003.
[16] E. R. Ruotsalainen, T. Tahkonen, and J. Kostamovaara, “An Integrated Time-to-Digital Converter with 30-ps Single-Shot Precision,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1507-1510, Oct. 2000.
[17] P. Chen, S. L. Liu, and J. S. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 594-598, Sep. 2000.
[18] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Transactions on Circuit and Systems, vol. 53, pp. 220-224, Mar. 2006.
[19] P. Dudek, S. Szczepanski, and J. V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE Journal of Solid State Circuits, vol. 35, no. 2, pp.240-247, Feb. 2000.
[20] A. H. Chan and G. W. Roberts, “A Deep Sub-Micron Timing Measurement Circuit Using A Single-Stage Vernier Delay Line,” IEEE Custom Integrated Circuits, pp. 77-80, May 2002.
[21] Agilent, “Serial-ATA International Organization,” Version 1.0RC2, Jan. 2007.
[22] Agilent, “Agilent Infiniium Oscilloscope Jitter Analysis Technique.”
[23] T. Xia, H. Zheng, J. Li, and A. Ginawi, “Self-Refereed On-Chip Jitter Measurement Circuit Using Vernier Oscillators,” IEEE Computer Society Annual Symposium on VLSI, pp. 218-213, May 2005.
[24] K. H. Cheng, C.W. Huang, and S. Y. Jiang, “Self-Sampled Vernier Delay Line for Built-in Clock Jitter Measurement,” IEEE International Symposium on Circuits and Systems, pp. 1591-1594, May 2006.
[25] M. Oulmane and G. W. Roberts, “A CMOS Time Amplifier for Femto-Second Resolution Timing Measurement,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 509-512, May 2004.
[26] M. M. Nejad and M. Sachdev, “A Monotonic Digitally Controlled Delay Element,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2212-2219, Nov. 2005.
[27] K. Sung and L. S. Kim, “A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1997-2004, Nov. 2004.
[28] S. Sunter and A. Roy, “On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz,” IEEE Design & Test of Computers, pp. 314-321, July 2004.
[29] J. P. Jansson, A. Mantyniemi, and J. Kostamovaara, “A CMOS Time-to-Digital Converter With Better Than 10 ps Single-shot Precision,” IEEE Journal of Solid-State Circuits, vol. 41, no. 6, Jan. 2006.
[30] K. Nose, M. Kajita, and M. Mizuno, “A 1ps-Resolution Jitter Measurement Macro Using Interpolated Jitter Oversampling,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, Dec. 2006.
[31] J. C. Hsu and C. C. Su, “BIST for Measuring Clock Jitter of Charge-Pump Phase-Locked Loops,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2, Feb. 2008.
[32] S. Henzler, S. Koeppe, D. Lorenz, W. Kamp, R. Kuenemund, and D. D. Landsiedel, “A Local Passive Time Interpolation Concept for Variation-Tolerant High-Resolution Time-to-Digital Conversion,” IEEE Journal of Solid-State Circuits, vol. 43, no. 7, Jun. 2008.