跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李振宇
Chen-Yu Lee
論文名稱: 基於高斯混合模型之行為塑模方法應用於智慧型手錶之開放集駕駛者身分識別研究
Smartwatch-based Open-set Driver Identification by Using GMM-based Behavior Modeling Approach
指導教授: 梁德容
Deron Liang
張欽圳
Chin-Chun Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 車聯網開放集駕駛者識別高斯混合模型支持向量機
外文關鍵詞: Internet of Vehicles, open-set driver identification, Gaussian mixture models, Support vector machine
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著車聯網所需的技術日趨完整,伴隨而來的商機及風險也將日益增加,駕駛者的驗證與辨識將會成為未來重要的議題。實驗室先前的研究提出了一個基於高斯混和模型行為建模方法,克服傳統高斯混和模型在駕駛行為塑模上的問題,並證明其方法於駕駛者驗證上的優勢。本研究將其延伸至開放集駕駛者識別應用,並於開放集駕駛者識別的封閉集識別階段與驗證階段上使用四種方法組合十種架構,探討不同組合的識別效果。最後,我們將架構自模擬環境移至真實環境,看看是否能得到一樣的推論。實驗結果顯示,無論以何種架構進行封閉集識別階段,只要驗證階段使用先前研究提出的方法便能有效的減少相等錯誤率(Equal Error Rate, EER)。模擬環境中傳統 GMM 的 EER 為 23.182%、先前研究提出的方法為 11.185%;真實環境中傳統 GMM 的 EER 為 33.657%、先前研究提出的方法為 17.372%。


    As the technology required for the Internet of Vehicles becomes more complete, the accompanying business opportunities and risks becomes higher. And the Driver Authentication and Identification will be an important issue in the future. Previous research proposed a driving behavior modeling method base on Gaussian mixture model. The method overcome the problem of traditional Gaussian mixture model in driving behavior modeling and proves the advantage on driver authentication. This paper will apply it to open-set driver identification. And use 10 mechanisms composed 3 extending modeling methods to discuss each effect on close-set registrant identification and registrant authentication. Finally, we experiment in the real-drive environment. And want to know that weather will get the same conclusion or not. The result shows that whatever modeling methods we used on close-set registrant identification, the EER can be reduced effectively as long as the method proposed by previous research is used on registrant authentication. The GMM’s EER is 23.182% and the method’s is 11.185% in simulated environment; The GMM’s EER is 33.657% and the method’s is 17.372% in real-drive environment.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 1. 緒論 1 2. 文獻探討 6 2.1 駕駛者行為模式生物特徵識別技術 6 2.2 高斯混合模型 8 2.3 支持向量機 9 2.4 堆疊 10 2.5 基於高斯混合模型行為建模方法 11 2.5.1 資料前處理 12 2.5.2 特徵擷取 15 2.5.3 駕駛者行為模型 17 3. 資料收集環境與設備 19 3.1 駕駛模擬環境 19 3.2 駕駛真實環境 20 3.3 實驗設備 20 4. 系統架構 22 4.1 不包含非註冊者資訊的基於GMM一對一建模方法 23 4.2 開放式駕駛者身分識別架構 25 5. 實驗與討論 31 5.1 實驗步驟 31 5.1.1 資料收集 31 5.1.2 開放式駕駛者行為識別評估指標 32 5.2 實驗結果 34 5.2.1 Experiment 1: 分析需要多少執行次數 34 5.2.2 Experiment 2: 模擬環境各架構效能分析 35 5.2.3 Experiment 2: 真實環境各架構效能分析 37 5.3 討論 39 6. 結論 41 參考文獻 42

    [1] Igarashi, K.; Miyajima, C.; Itou, K.; Takeda, K.; Itakura, F.; Abut, H. Biometric identification using driving behavioral signals. In Proceedings of IEEE International Conference on Multimedia and Expo, Taipei, Taiwan, 27–30 June 2004; 1, pp. 65–68.
    [2] Miyajima, C.; Nishiwaki, Y.; Ozawa, K.; Wakita, T.; Itou, K.; Takeda, K.; Itakura, F. Driver modeling based on driving behavior and its evaluation on driver identification. Proc. IEEE 2007, 95, 427–437.
    [3] Wahab, A.; Quek, C.; Tan, C.-K.; Takeda, K. Driving profile modeling and recognition based on soft computing approach. IEEE Trans. Neural Networks, April 2009, 20, 563–582.
    [4] Qian, H.; Ou, Y.; Wu, X.; Meng, X.; Xu, Y. Support vector machine for behavior-based driver identification system. Journal of Robotics., 2010, 2010.
    [5] Lee, B.-G.; Lee, B.-L.; Chung, W.-Y. Wristband-type driver vigilance monitoring system using smartwatch. IEEE Sensors J., June 2015, 15, 5624–5633.
    [6] Chen, R.; She, M. F.; Sun, X.; Kong, L.; Wu, Y. Driver Recognition Based on Dynamic Handgrip Pattern on Steeling Wheel. In Proceedings of the 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Sydney, NSW, 2011, pp. 107-112.
    [7] Riener, A.; Ferscha, A. Supporting implicit human-to-vehicle interaction: driver identification from sitting postures. In Proceedings of the 1st Annual International Symposium on Vehicular Computing Systems (ISVCS 2008), Dublin, Ireland, 22-24 July 2008.
    [8] Lee, B.-L.; Lee, B.-G.; Chung, W.-Y. Standalone wearable driver drowsiness detection system in a smartwatch. IEEE Sens. J., July 2016, 16, 5444–5451.
    [9] Ching-Han Yang, Chin-Chun Chang, Deron Liang (2018) “A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication”, Sensors, Volume 18, Issue 4, March 2018.
    [10] Gartner Inc. Gartner says worldwide wearable device sales to grow 17 percent in 2017. 2017. Available online: https://www.gartner.com/newsroom/id/3790965
    [11] Volvo Car Corporation. Remote S for Tesla. Available online: https://itunes.apple.com/us/app/volvo-on-call/id439635293?platform=appleWatch& preserveScrollPosition=true#platform/appleWatch
    [12] Hyundai Motor America. MyHyundai with Blue Link. Available online: https://itunes.apple.com/us/app/hyundai-blue-link/id893514610?platform=appleWatch& preserveScrollPosition=true#platform/appleWatch
    [13] Rego Apps. Remote S for Tesla. Available online: https://itunes.apple.com/us/app/remote-s-for-tesla/id991623777?platform=appleWatch&preserveScrollPosition=true&platform =appleWatch#platform/appleWatch&platform=appleWatch
    [14] Douglas, J.L.; Junqua, J.C.; Kotropoulos, C.; Kuhn, R.; Perronnin, F.; Pitas, I. Recent Advantages in Biometric Person Authentication. In Proceedings of Acoustics, Speech, and Signal Processing (ICASSP), May 2002, pp.4060-4063.
    [15] Reynolds D. A.; Rose, R. C. Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech and Audio Processing, Jan 1995, 3, 72-83.
    [16] Özgündüz E., Şentürk T., Karslıgil M.E. (2005) Efficient Off-Line Verification and Identification of Signatures by Multiclass Support Vector Machines. In: Gagalowicz A., Philips W. (eds) Computer Analysis of Images and Patterns. CAIP 2005. Lecture Notes in Computer Science, vol 3691. Springer, Berlin, Heidelberg
    [17] Reynolds, Douglas A. "Automatic Speaker Recognition: Current Approaches and Future Trends", ICASSP, 2001.
    [18] Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. J. Machine Learning Res., 2003, 3, 1439-1461.
    [19] Furui, S. Speaker independent isolated word recognition using dynamic features of the speech spectrum. IEEE Trans. Acoustics, Speech Signal Process, 1986, 34, 52-59.
    [20] Wang, L.; Ning, H.; Tan, T.; Hu, W. Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol., February 2004, 14, 149–158.
    [21] Google Inc. Google Map Street View. 2018. Available online: https://www.google.com.tw/maps/@24.9674195,121.1884624,3a,75y,91.68h,87.48t/data=!3m7!1e1!3m5!1sGZVySxRXvBuUBVLw1Esipg!2e0!3e11!7i13312!8i6656?hl=en&authuser=0
    [22] United Nations: Household Size and Composition Around the World 2017. Available online: http://www.un.org/en/development/desa/population/publications/pdf/ageing/household_size_and_composition_around_the_world_2017_data_booklet.pdf

    QR CODE
    :::