跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃品嘉
Pin-Chia Huang
論文名稱: 利用非古典時間相關光子對進行量子增強目標物探測
Quantum-Enhanced Target Detection Using Nonclassical Time-Correlated Photon Pairs
指導教授: 蔡秉儒
Pin-Ju Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 59
中文關鍵詞: 量子目標偵測自發參數下轉換量子照明
外文關鍵詞: Quantum target detection, Spontaneous parametric down-conversion, Quantum illumination
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇的研究目的在於,運用非古典時間相關光子對的糾纏特性,在充滿雜訊的環境中進行測量,透過實驗證明這種量子方法相對於古典方法的優勢,並將此量子方法用於測量目標物與偵測器的距離。實驗中使用的糾纏光子對是透過自發參數下轉換( Spontaneous Parametric Down Conversion, SPDC )所產生的。每對光子中的閒置( idler )光子會直接收集到偵測器中測量,而訊號( signal )光子則會發射到目標物再送到偵測器中測量,透過分析低反射率目標物反射的訊號光子及閒置光子間的量子時間相關性,能夠發現這種量子方法即使在充滿雜訊及高損耗的的環境下,仍然能提高訊號雜訊比( Signal-to-Noise Ratio, SNR )。為了衡量量子 SNR 相對於古典 SNR 的優勢,定義了量子增強因子( Quantum Enhancement Factor, QEF ),且透過實驗能得出 QEF 最高可達到約 7700 倍,並進一步將此量子方法用於測量目標物與偵測器間的距離,能夠得知其準確程度高並且還是很簡單的方法。這種量子方法在軍事應用方面具有潛力,為現代測距與偵測系統在面對複雜環境時提供一項具體且有效的解決方案。


    The aim of this study is to utilize the entangled properties of non-classically time-correlated photon pairs to perform measurements in noisy environments, demonstrating through experiments the advantages of this quantum approach over traditional methods. This quantum technique is further applied to measure the distance between a target and a detector. The entangled photon pairs used in the experiment are generated via spontaneous parametric down-conversion (SPDC). In each pair, the idler photon is directly sent to the detector for measurement, while the signal photon is transmitted toward the target and then reflected back to the detector. By analyzing the quantum time correlation between the weakly reflected signal photon and its corresponding idler photon, it is shown that this quantum method can significantly enhance the signal-to-noise ratio (SNR) even under conditions of high noise and loss—achieving an improvement of up to 7700 times compared to classical techniques. Furthermore, applying this quantum method to free-space distance measurements demonstrates its exceptional accuracy. This approach holds great potential for military applications, offering a concrete and effective solution to the technical challenges faced by modern ranging and detection systems in complex environments.

    目錄 誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 第一章 緒論 1 1.1 古典照明與量子照明 1  1.1.1 古典照明方法 2  1.1.2 量子照明方法 3 1.2 糾纏光子對的產生 4 第二章 理論 7 2.1 自發參數下轉換 7 2.2 二階相干度 12 2.3 訊號雜訊比 16  2.3.1 古典雜訊比 16  2.3.2 量子雜訊比 17 2.4 量子增強因子 18 第三章 模擬情境中的實驗結果與數據分析 20 3.1 模擬目標物的實驗架設 20 3.2 模擬情境下的實驗結果 22  3.2.1 量子照明與古典照明在辨識訊號時的實驗對比 22  3.2.2 模擬情境中的 𝑔(2) 24  3.2.3 模擬情境中的古典訊雜比與功率關係之分析 25  3.2.4 模擬情境中的量子訊雜比與功率關係之分析 26  3.2.5 模擬情境中量子增強因子及二階相干度之對比 27 第四章 自由空間中的實驗結果與數據分析 29 4.1 自由空間中的實驗架設 29 4.2 自由空間中的實驗結果 30  4.2.1 不同參數下自由空間中光子對時間相關性分析 31  4.2.2 自由空間中的時間符合速率及雜訊速率 32  4.2.3 自由空間中的古典訊雜比與功率關係之分析 34  4.2.4 自由空間中的量子訊雜比與功率關係之分析 36  4.2.5 自由空間中量子增強因子及二階相干度之對比 37 4.3 自由空間中延伸應用測試目標距離之實驗 39 第五章 結論 43 參考文獻 45

    [1] Nicolas Gisin and Rob Thew. Quantum communication. Nature Photonics, 1(3):165–171, 2007.

    [2] Yu-Ao Chen, Qiang Zhang, Teng-Yun Chen, Wen-Qi Cai, Sheng-Kai Liao, Jun Zhang, Kai Chen, Juan Yin, Ji-Gang Ren, Zhu Chen, et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589(7841):214–219, 2021.

    [3] Daniele Cozzolino, Beatrice Da Lio, Davide Bacco, and Leif Katsuo Oxenløwe. High-dimensional quantum communication: benefits, progress, and future challenges. Advanced Quantum Technologies, 2(12):1900038, 2019.

    [4] Jeremy L. O’Brien. Optical quantum computing. Science, 318(5856):1567–1570, 2007.

    [5] Eleanor Rieffel and Wolfgang Polak. An introduction to quantum computing for non-physicists. ACM Computing Surveys (CSUR), 32(3):300–335, 2000.

    [6] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.

    [7] Giorgio Brida, Marco Genovese, and Ivano Ruo Berchera. Experimental realization of sub-shot-noise quantum imaging. Nature Photonics, 4(4):227–230, 2010.

    [8] Phuc Q. Le, Fangyan Dong, and Kaoru Hirota. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Information Processing, 10:63–84, 2011.

    [9] Marco Genovese. Real applications of quantum imaging. Journal of Optics, 18(7):073002, 2016.

    [10] Seth Lloyd. Enhanced sensitivity of photodetection via quantum illumination. Science, 321(5895):1463–1465, 2008.

    [11] E.D. Lopaeva, Ivano Ruo Berchera, Ivo Pietro Degiovanni, S. Olivares, Giorgio Brida, and Marco Genovese. Experimental realization of quantum illumination. Physical Review Letters, 110(15):153603, 2013.

    [12] Shabir Barzanjeh, Saikat Guha, Christian Weedbrook, David Vitali, Jeffrey H. Shapiro, and Stefano Pirandola. Microwave quantum illumination. Physical Review Letters, 114(8):080503, 2015.

    [13] Seth Lloyd. Enhanced sensitivity of photodetection via quantum illumination. Science, 321(5895):1463–1465, 2008.

    [14] Duncan G. England, Bhashyam Balaji, and Benjamin J. Sussman. Quantum-enhanced standoff detection using correlated photon pairs. Physical Review A, 99(2):023828, 2019.

    [15] Han Liu, Zhiyuan Tang, Yu Zou, Yongmeng Zhang, Ziyang Zhang, and Jian Tang. Enhancing lidar performance metrics using continuous-wave photon-pair sources. Optica, 6(10):1349–1355, 2019.

    [16] W. Lukosz. Optical systems with resolving powers exceeding the classical limit. Journal of the Optical Society of America, 56(11):1463–1471, 1966.

    [17] Michal Parniak. A useful application for a quantum optical signal processor: the improvement of spectroscopy measurements. https://www.qodl.eu/2022/02/19/a-useful-application-for-a-quantum-processor-the-improvement-of-spectroscopy-measurements/, 2022.02.19.

    [18] N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, and P.M. Petroff. Entangled photon pairs from semiconductor quantum dots. Physical Review Letters, 96(13):130501, 2006.

    [19] Yan Chen, Michael Zopf, Robert Keil, Fei Ding, and Oliver G. Schmidt. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nature Communications, 9(1):2994, 2018.

    [20] R. Mark Stevenson, Robert J. Young, Paola Atkinson, Ken Cooper, David A. Ritchie, and Andrew J. Shields. A semiconductor source of triggered entangled photon pairs. Nature, 439(7073):179–182, 2006.

    [21] Dr. Michal Parniak. A useful application for a quantum processor: The improvement of spectroscopy measurements. https://www.eurekalert.org/news-releases/943344, 2022.02.14.

    [22] Boris B. Blinov, David L. Moehring, L.-M. Duan, and Chris Monroe. Observation of entanglement between a single trapped atom and a single photon. Nature, 428(6979):153–157, 2004.

    [23] Chris Monroe. Quantum information processing with atoms and photons. Nature, 416(6877):238–246, 2002.

    [24] Christophe Couteau. Spontaneous parametric down-conversion. Contemporary Physics, 59(3):291–304, 2018.

    [25] S. Tanzilli, Wolfgang Tittel, Hugues De Riedmatten, Hugo Zbinden, Paolo Baldi, M. DeMicheli, D. B. Ostrowsky, and Nicolas Gisin. PPLN waveguide for quantum communication. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 18:155–160, 2002.

    [26] Boyuan Jin, Dhananjay Mishra, and Christos Argyropoulos. Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces. Nanoscale, 13(47):19903–19914, 2021.

    [27] Shanni Prutchi. Shanni prutchi construction of an entangled photon source. https://www.youtube.com/watch?v=tnisEawiK2k, 2015.12.01.

    [28] Shai Emanueli and Ady Arie. Temperature-dependent dispersion equations for ktioop4 and ktioosa4. Applied Optics, 42(33):6661–6665, 2003.

    [29] Feiyan Hou, Xiao Xiang, Runai Quan, Mengmeng Wang, Yiwei Zhai, Shaofeng Wang, Tao Liu, Shougang Zhang, and Ruifang Dong. An efficient source of frequency anti-correlated entanglement at telecom wavelength. Applied Physics B, 122:1–8, 2016.

    [30] Frédéric Bouchard, Alicia Sit, Yingwen Zhang, Robert Fickler, Filippo M. Miatto, Yuan Yao, Fabio Sciarrino, and Ebrahim Karimi. Two-photon interference: the Hong–Ou–Mandel effect. Reports on Progress in Physics, 84(1):012402, 2020.

    [31] M.V. Jabir and Goutam K. Samanta. Robust, high brightness, degenerate entangled photon source at room temperature. Scientific Reports, 7(1):12613, 2017.

    [32] Pavel Sekatski, Jean-Daniel Bancal, Nicolas Sangouard, and Nicolas Gisin. Detector imperfections in photon-pair source characterization. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(12):124016, 2012.

    [33] Claudia Benedetti, Fabrizio Buscemi, Paolo Bordone, and Matteo G.A. Paris. Quantum probes for the spectral properties of a classical environment. Physical Review A, 89(3):032114, 2014.

    QR CODE
    :::