跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱彥智
Yen-Chih Chiu
論文名稱: 以自生成的微凝膠之顆粒緊密填充分散系統作為三維列印支撐材及微米級顆粒分散劑
Packed dispersion of self-forming microgels as a supporting medium for 3D printing and as a dispersant for micron-sized particles
指導教授: 曹恆光
Heng-Kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 53
中文關鍵詞: 瓊脂自生成之微凝膠緊密堆積顆粒分散系統降伏應力嵌入式三維列印
外文關鍵詞: agar, self-forming microgel, packed dispersion, yield stress, embedded 3D printing
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們發展出一個能以低能耗的方法去製備自生成的瓊脂微凝膠之顆粒緊密填充分散系統,當瓊脂的濃度低於臨界成膠濃度時(0.4 wt%),且其水溶液冷卻之後,這些瓊脂微凝膠就會從其溶液內自發性地生成,甚至在濃度極低時(0.04 wt%),依舊可以觀察到,這些自生成的瓊脂微凝膠仍然會在如此稀薄的水溶液中自發性的生成。而那些濃度高於0.08 wt%的顆粒分散系統,其儲存模數皆高於損耗模數(G’>G”),並表現出類凝膠行為。而自生成瓊脂微凝膠之高度顆粒堵塞分散系統(1 wt%)可以透過離心來製備,且其展現出液態狀固體的行為及快速自修復的能力。基於凝膠化測試(瓶身倒置及落球測試)的結果,可觀察出其機械性質顯著大於藉由強烈攪拌而製備出的液態凝膠(1 wt%)。自生成瓊脂微凝膠之高度顆粒堵塞分散系統可以用來當作3維列印的支撐材料,所有經過紫外線光固化後的墨水,其結構皆與預先設計的形狀相符,沒有任何變形。除此之外,它也能當作一個新穎的分散劑,可以分散微米級大小的顆粒,展現出優秀的支撐能力。


    In this work, a facile and low-energy consumption method is developed to obtain packed dispersions of self-forming agar microgels. As the agar concentration is lower than the critical gelation concentration (0.4 wt%), the microgels are spontaneously formed from the solution with the concentration as low as 0.04 wt% upon cooling. The dispersions with the concentration greater than 0.08 wt% exhibit the yield stress and the storage modulus exceeding the loss modulus (G’ > G”), revealing the gel-like behavior. After centrifugation, a highly jammed dispersion of self-forming microgels (1 wt%) can be acquired, and it behaves like a liquid-like solid with the rapidly self-healing ability. On the basis of the gelification tests (inverted tube and falling ball), its mechanical strength is shown to be significantly stronger than fluid gel (1 wt%) fabricated from strong agitation. The highly jammed dispersion can be used as supporting medium for 3D printing. All the UV-cured structures match their designed shapes perfectly without deformation. Moreover, it can be applied to suspend micron-sized particles in water as a novel dispersant, showing the outstanding supporting ability.

    摘要 i ABSTRACT ii 致謝 iii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 EXPERIMENT 4 2-1 Materials 4 2-2 Preparation of self-forming agar microgels 4 2-3 Preparation of the packed dispersion of self-forming agar microgels 4 2-4 Preparation of the 1 wt% agar hard bulk gel 5 2-5 Preparation of the 1 wt% agar fluid gel 5 2-6 Measurement of rheological properties 5 2-7 Microgel observation by optical microscope 6 2-8 Size Measurement of microgels 6 2-9 Writing in the packed dispersion of agar microgels 6 2-10 Solidification of the written inks 6 CHAPTER 3 RESULT AND DICUSSION 8 3-1 Spontaneous formation of agar microgels and underlying mechanism 8 3-2 Solid-like behavior of packed dispersions 12 3-3 Highly jammed dispersions after centrifugation 17 3-4 Applications as a UV-resistant 3D printing supporting medium and dispersant for micron-sized particles 23 CHAPTER 4 CONCLUSION 30 CHAPTER 5 REFERENCE 32

    [1.] Duckworth, M. and W. Yaphe, The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 1971. 16(1): p. 189-197.
    [2.] Lahaye, M. and C. Rochas. Chemical structure and physico-chemical properties of agar. in International workshop on gelidium. 1991. Springer.
    [3.] Ed-Daoui, A. and P. Snabre, Poroviscoelasticity and compression-softening of agarose hydrogels. Rheologica Acta, 2021. 60(6): p. 327-351.
    [4.] Rinaudo, M., Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 2008. 57(3): p. 397-430.
    [5.] Ellis, A. and J.C. Jacquier, Manufacture and characterisation of agarose microparticles. Journal of Food Engineering, 2009. 90(2): p. 141-145.
    [6.] Nada, A., Polymer Gels: Synthesis and Characterization. 2018.
    [7.] Arnott, S., et al., The agarose double helix and its function in agarose gel structure. Journal of Molecular Biology, 1974. 90(2): p. 269-284.
    [8.] Feiner, G., 5 - Additives: phosphates, salts (sodium chloride and potassium chloride, citrate, lactate) and hydrocolloids, in Meat Products Handbook, G. Feiner, Editor. 2006, Woodhead Publishing. p. 72-88.
    [9.] Lee, T.Y., K.-h. Yoon, and J.I. Lee, NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D. Biology open, 2016. 5(4): p. 529-534.
    [10.] Normand, V., et al., New insight into agarose gel mechanical properties. Biomacromolecules, 2000. 1(4): p. 730-738.
    [11.] Burey, P., et al., Hydrocolloid gel particles: formation, characterization, and application. Crit Rev Food Sci Nutr, 2008. 48(5): p. 361-77.
    [12.] Mikuš, Ľ., Ľ. Valík, and L. Dodok, Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2011. 59: p. 325-334.
    [13.] Antonietti, M., Microgels, in Encyclopedia of Materials - Science and Technology. 2001. p. 5635-5637.
    [14.] Singhal, R. and K. Gupta, A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polymer-Plastics Technology and Engineering, 2016. 55(1): p. 54-70.
    [15.] Plamper, F.A. and W. Richtering, Functional microgels and microgel systems. Accounts of chemical research, 2017. 50(2): p. 131-140.
    [16.] Thorne, J.B., G.J. Vine, and M.J. Snowden, Microgel applications and commercial considerations. Colloid and Polymer Science, 2011. 289(5): p. 625.
    [17.] Burey, P., et al., Gel particles from spray-dried disordered polysaccharides. Carbohydrate Polymers, 2009. 76(2): p. 206-213.
    [18.] Shewan, H.M. and J.R. Stokes, Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering, 2013. 119(4): p. 781-792.
    [19.] McClements, D.J., Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science, 2017. 240: p. 31-59.
    [20.] Santoro, M., et al., Smart approach to evaluate drug diffusivity in injectable agar− carbomer hydrogels for drug delivery. The Journal of Physical Chemistry B, 2011. 115(11): p. 2503-2510.
    [21.] Yin, Z.-C., Y.-L. Wang, and K. Wang, A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. Journal of Drug Delivery Science and Technology, 2018. 43: p. 12-18.
    [22.] Iwanaga, S., et al., Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013. 109: p. 301-306.
    [23.] Ishii, T., et al., Microgelation imparts emulsifying ability to surface-inactive polysaccharides—bottom-up vs top-down approaches. npj Science of Food, 2018. 2(1): p. 15.
    [24.] Skelhon, T.S., et al., High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food Funct, 2013. 4(9): p. 1314-21.
    [25.] Ellis, A., et al., Stabilisation of foams by agar gel particles. Food Hydrocolloids, 2017. 73: p. 222-228.
    [26.] Malone, M.E. and I.A. Appelqvist, Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. Journal of controlled release, 2003. 90(2): p. 227-241.
    [27.] Shao, L., et al., Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Design and Manufacturing, 2020. 3(1): p. 30-39.
    [28.] Takeuchi, H., et al., Spray-dried composite particles of lactose and sodium alginate for direct tabletting and controlled releasing. International Journal of Pharmaceutics, 1998. 174(1): p. 91-100.
    [29.] Suzawa, E. and I. Kaneda, Rheological properties of agar microgel suspensions prepared using water-in-oil emulsions. Journal of Biorheology, 2010. 24(2): p. 70-76.
    [30.] Adams, S., W. Frith, and J. Stokes, Influence of particle modulus on the rheological properties of agar microgel suspensions. Journal of Rheology, 2004. 48(6): p. 1195-1213.
    [31.] Gabriele, A., F. Spyropoulos, and I.T. Norton, A conceptual model for fluid gel lubrication. Soft Matter, 2010. 6(17): p. 4205-4213.
    [32.] Garrec, D.A. and I.T. Norton, Understanding fluid gel formation and properties. Journal of Food Engineering, 2012. 112(3): p. 175-182.
    [33.] Norton, I.T., D.A. Jarvis, and T.J. Foster, A molecular model for the formation and properties of fluid gels. International Journal of Biological Macromolecules, 1999. 26(4): p. 255-261.
    [34.] Hamilton, I.E. and I.T. Norton, Modification to the lubrication properties of xanthan gum fluid gels as a result of sunflower oil and triglyceride stabilised water in oil emulsion addition. Food Hydrocolloids, 2016. 55: p. 220-227.
    [35.] Chen, Y.M., S. Rangachari, and R. Jackson, Theoretical and experimental investigation of fluid and particle flow in a vertical standpipe. Industrial & Engineering Chemistry Fundamentals, 1984. 23(3): p. 354-370.
    [36.] Gabriele, A., F. Spyropoulos, and I.T. Norton, Kinetic study of fluid gel formation and viscoelastic response with kappa-carrageenan. Food Hydrocolloids, 2009. 23(8): p. 2054-2061.
    [37.] Zhang, K., The fluid gels: A research review. 2020, EDP Sciences: Les Ulis.
    [38.] Zucca, P., R. Fernandez-Lafuente, and E. Sanjust, Agarose and its derivatives as supports for enzyme immobilization. Molecules, 2016. 21(11): p. 1577.
    [39.] Ghebremedhin, M., S. Seiffert, and T.A. Vilgis, Physics of agarose fluid gels: Rheological properties and microstructure. Current Research in Food Science, 2021. 4: p. 436-448.
    [40.] Tadros, T.F., Basic principles of dispersions. 2017: Walter de Gruyter GmbH & Co KG.
    [41.] Garrec, D.A., B. Guthrie, and I.T. Norton, Kappa carrageenan fluid gel material properties. Part 1: Rheology. Food Hydrocolloids, 2013. 33(1): p. 151-159.
    [42.] Hu, S.-W., et al., UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing. ACS Applied Materials & Interfaces, 2020. 12(21): p. 24450-24457.
    [43.] Nguyen, T.P., et al., Coexistence of liquid-like emulsion and solid-like emulsion glass beyond the close-packing limit. Journal of the Taiwan Institute of Chemical Engineers, 2020. 115: p. 28-34.
    [44.] Trudicova, M., et al., Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers (Basel), 2020. 12(11).
    [45.] Grosskopf, A.K., et al., Viscoplastic matrix materials for embedded 3D printing. ACS applied materials & interfaces, 2018. 10(27): p. 23353-23361.
    [46.] Zhao, J. and N. He, A mini-review of embedded 3D printing: supporting media and strategies. Journal of Materials Chemistry B, 2020. 8(46): p. 10474-10486.
    [47.] Choi, J.-W. and H.-C. Kim, 3D printing technologies-a review. Journal of the Korean Society of Manufacturing Process Engineers, 2015. 14(3): p. 1-8.
    [48.] LeBlanc, K.J., et al., Stability of high speed 3D printing in liquid-like solids. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1796-1799.
    [49.] Khan, A.U., B.J. Briscoe, and P.F. Luckham, Interaction of binders with dispersant stabilised alumina suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 161(2): p. 243-257.
    [50.] Zhang, J., et al., Improvement of the Dispersion of Al2O3 Slurries Using EDTA‐4Na. Journal of the American Ceramic Society, 2006. 89(4): p. 1440-1442.

    QR CODE
    :::