跳到主要內容

簡易檢索 / 詳目顯示

研究生: 古家明
Lamin L. Kujabi
論文名稱: 混合型錯誤隱藏法在高效率視頻編碼之研究
Hybrid Error Concealment for High Efficiency Video Coding (HEVC)
指導教授: 林銀議
Yinyi Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 错误隐藏(EC)HEVC混合算法中首先用性插(SMFI)空间错 误隐藏时间错误隐藏
外文關鍵詞: Error concealment (EC), HEVC, Hybrid Error Concealment, Selective Motion Field Interpolation(SMFI),, Spatial Error concealment, Temporal Error Concealment
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當前的新視頻設備和應用需要有效的壓縮方法。在過去的幾年中,通過不同類型的網絡將視頻流式傳輸到不同的設備已經大大增加,設備範圍從電視到智能電話以及從有線網絡到無線網絡的網絡都活用了Long Term Evolution Advanced (LTE Advanced)。無線電視和娛樂產業的快速發展增加了對高清晰度,高幀率視頻應用的需求。由於H.264 / AVC主流壓縮標準存在缺陷,在2013年4月,德國德累斯頓舉行的JCT-VT會議定義了新一代視頻編碼標準 - 高效視頻編碼(HEVC)。 HEVC旨在將視頻的壓縮效率提高一倍,這意味著在相同的重建質量下,比特率將降低50%。然而,當通過IP網絡或無線移動網絡傳輸視頻數據時,總是會發生隨機錯誤和視頻數據損失。事實上HEVC仍然採用與H.264中相同的幀間和幀內預測機制,高壓縮視頻數據易於出現通道錯誤。有時即使很少的錯誤也可能對視頻數據的重建質量產生嚴重影響。本文仔細分析了HEVC的特點,並進一步研究了後解碼過程中的錯誤隱藏技術。然後提出了考慮HEVC特徵的錯誤隱藏算法。針對容易出錯的視頻傳輸信道,提出了一種利用線性插值的擴展混合錯誤隱藏算法。在所提出的混合算法中,首先採用選擇性運動場內插(SMFI)來隱藏錯誤的LCU。然後使用空間和時間邊界匹配的誤差來檢查SMFI是否正確地隱藏了錯誤的宏塊。如果不正確地重建時間恢復的宏塊,則使用線性插值的空間錯誤隱藏來隱藏損壞的宏塊而不是SMFI。所提出的混合演算法在空間和時間錯誤隱藏上採用線性插值法。


    Abstract
    The current and new video devices and applications require
    an efficient compression methods. Streaming of video
    to different devices over different types of networks has
    substantially increased during the past few years, with
    devices ranging from connected televisions to smart-phones
    and networks ranging from wired networks to wireless
    networks making use of Long Term Evolution Advanced
    (LTE Advanced). The rapid development of radio television
    and video entertainment industries has increase the demand
    for high definition, high frame rate video applications.
    As the H.264/AVC mainstream compression standard has
    its deficiency, In April 2013, JCT-VT meeting held in Dresden,
    Germany, defined the new generation video coding standard
    called High Efficiency Video Coding (HEVC). HEVC is
    aimed to double the compression efficiency of videos, which
    means that the bitrate will be reduced by 50 percent under
    the same reconstruction quality. However, when video
    data are transmitted through IP networks or wireless mobile
    networks, random error and loss of video data always
    occur. The fact that HEVC still adopts the same inter
    and intra frame prediction mechanism as in H.264, high
    compressed video data are prone to channel errors. Sometimes
    even few errors may have serious impact on the reconstruction
    quality of video data. This paper closely analyses the
    characters of HEVC, and further studies error concealment
    technology in the post-decoding process. Then it proposes
    error concealment algorithms which take the characters
    of HEVC into account. An extended hybrid error concealment
    algorithm using linear interpolation for error-prone video
    transmission channel is been suggested. In the proposed
    hybrid algorithm, the selective motion field interpolation (SMFI) is first employed to conceal the erroneous LCU.
    The spatial and temporal boundary-matched errors are
    then used to check whether the SMFI conceals the erroneous
    macroblock properly. If the temporally recovered macroblock
    is reconstructed incorrectly, the spatial error concealment
    using linear interpolation is employed to conceal the damaged
    macroblock instead of SMFI. The proposed hybrid algorithm
    employs the linear interpolation on both spatial and temporal
    error concealment.

    Contents 1 INTRODUCTION 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Related Work on HEVC Error Concealment . . . . . . . . . . . . . . 5 2 HEVC Key Research Areas 7 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Key technical Analysis of HEVC . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Coding Structure . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1.1 Flexible coding structure . . . . . . . . . . . . . . . 9 2.2.1.2 Flexible transformation structure . . . . . . . . . . 12 2.2.2 Prediction mode . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2.1 Intra prediction . . . . . . . . . . . . . . . . . . . . . 13 2.2.2.2 Inter-frame prediction . . . . . . . . . . . . . . . . . 14 2.2.3 Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.5 parallel design . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.5.1 Tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.5.2 Entropy Slice . . . . . . . . . . . . . . . . . . . . . . 17 2.2.5.3 Wavefront Parallel Processing (WPP) . . . . . . . . 18 2.3 HEVC and H.264 key features comparison . . . . . . . . . . . . . . . 19 2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Intra and Inter Error Concealment Techniques for HEVC 22 3.1 Spatial and Temporal Error Concealment Methods . . . . . . . . . . 22 3.1.1 Spatial Error Concealment . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Temporal or Inter Error Concealment . . . . . . . . . . . . . . 25 3.1.2.1 Motion Copy Error Concealment . . . . . . . . . . . 25 3.1.2.2 Boundary Matching Algorithm (BMA) . . . . . . . . 25 3.1.3 SELECTIVE MOTION FIELD INTERPOLATION (SMFI) . . . 27 3.1.3.1 Motion Field Interpolation (MFI) . . . . . . . . . . . 27 3.1.4 Experimental Setups and Analysis . . . . . . . . . . . . . . . 30 3.1.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . 30 3.1.4.2 Experimental Analysis . . . . . . . . . . . . . . . . . 40 4 Hybrid Error Concealment 43 4.1 Experimental Setup and Analysis . . . . . . . . . . . . . . . . . . . . 46 4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 50 5 Conclusion 56 Bibliography 57 List of Figures 2.1 Block diagram of HEVC Encoder with buil-in decoded . . . . . . . . 8 2.2 Quadruple coding unit . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Encoding Unit (CU), Predictive Unit (PU), Transform Unit (TU) . . . 11 2.4 Flexible transformation and corresponding quad-tree structure . . . 12 2.5 Intra prediction brightness . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7 Entropy Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8 WPP schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.9 Comparison of key features of H.264 and HEVC . . . . . . . . . . . . 20 3.1 Weighted averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Boundary matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 BMA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Neighboring Motion Vectors around the Erroneous Macroblock . . . 28 3.5 Vidyo4 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 KristenAndSara Sequence . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 BasketballDrive Sequence . . . . . . . . . . . . . . . . . . . . . . . . 37 3.8 Cactus Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.9 RaceHorses Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.10 FourPeople Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.11 5% LCU loss rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.12 10% LCU loss rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.13 20 LCU loss rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.14 BasketballDrill image . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 Recovered Macroblock GR and its Neighbors . . . . . . . . . . . . . . 44 4.2 BasketballDrive Sequence PSNR comparison . . . . . . . . . . . . . 49 4.3 Vidyo4 Sequence PSNR comparison . . . . . . . . . . . . . . . . . . . 49 4.4 KristenAndSara Sequence PSNR comparison . . . . . . . . . . . . . 50 4.5 Cactus Sequence PSNR comparison . . . . . . . . . . . . . . . . . . . 50 4.6 BasketballDrill decoded image . . . . . . . . . . . . . . . . . . . . . . 53 4.7 Drill frame 5 decoded image . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 BQMall decoded image . . . . . . . . . . . . . . . . . . . . . . . . . . 55 List of Tables 3.1 HEVC coding parameters and hardware configuration . . . . . . . . 30 3.2 Details of the sequences used for the simulations . . . . . . . . . . . 31 3.3 Vidyo4 Sequence Mean PSNR . . . . . . . . . . . . . . . . . . . . . . 31 3.4 KristenAndSara Sequence Mean PSNR . . . . . . . . . . . . . . . . . 32 3.5 BasketballDrive Sequence Mean PSNR . . . . . . . . . . . . . . . . . 32 3.6 Cactus Sequence Mean PSNR . . . . . . . . . . . . . . . . . . . . . . 33 3.7 RaceHorses Sequence Mean PSNR . . . . . . . . . . . . . . . . . . . . 33 3.8 FourPeople Sequence Mean PSNR . . . . . . . . . . . . . . . . . . . . 34 3.9 5% loss rate for all sequences . . . . . . . . . . . . . . . . . . . . . . . 34 3.10 10% loss rate for all sequences . . . . . . . . . . . . . . . . . . . . . . 35 3.11 20% loss rate for all sequences . . . . . . . . . . . . . . . . . . . . . . 35 4.1 BasketballDrive Sequence Mean PSNR . . . . . . . . . . . . . . . . . 47 4.2 Vidyo4 Sequence Mean PSNR . . . . . . . . . . . . . . . . . . . . . . 47 4.3 KristenAndSara Sequence Mean PSNR . . . . . . . . . . . . . . . . . 47 4.4 Cactus Sequence Mean PSNR . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Average PSNR comparison . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding. Final
    draft approval Jan. 2013 (formally published by ITU-T in June, 2013, and in ISO/IEC
    in Nov. 2013)
    [2] V. Sze et al. (eds.), "High Efficiency Video Coding (HEVC): Algorithms and
    Architectures", Springer 2014.
    [3] I.E.G. Richardon, "H.264 and MPEG-4 Video Compression-Video Coding for
    Next-generation Multimedia", John Wiley and Sons Ltd, 2003.
    [4] K. McCann, W. J. Han, et al, "Video Coding Technology Proposal by Samsung",
    JCTVC-A124, pp.15-23, Apr. 2010.
    [5] B. N. Chen and Y. Lin, "Selective Motion Field Interpolation for Temporal
    Error Concealment," International Conference on Computer and Communication
    Engineering 2006 (ICCCE 2006), Kuala Lumpur, Malaysia, May 9-11, 2006.
    [6] B. N. Chen and Y. Lin, "Hybrid Error Concealment Using Linear Interpolation,".
    International Symposium on Communications and Information Technologies,
    Bangkok, 2006, pp. 926-931.
    [7] K. Ugyr, K. Andersson, and A. Fuldseth, "High performance, low complexity
    video coding and the emerging HEVC standard", IEEE Trans. Circuits and Systems
    for Video Technology, Vol. 20, No.12, pp. 1688-1697, 2010.
    [8] M. E. Al-Mualla, N. Canagarajah, and D. R. Bull, "Error concealment using
    motion field interpolation", Proc. of ICIP, pp. 512-516, Oct. 1998.
    [9] M. H. Jo and W. J. Song, "Error concealment for MPEG-2
    video decoders with enhanced coding mode estimation,"
    IEEE Trans. Consumer Electronics, vol. 46,no. 4, pp. 962-969, Nov. 2000
    [10] H. Sun, K. Challpali, and J. Zdepski, "Error Concealment in Digital Simulcast
    AD-HDTV Decoder," IEEE Trans. Consumer Electronics, vol. 38, no. 3, pp. 108-116,
    Aug.1992.
    [11] M. Usman, X. He, M. Xu and K. M. Lam, "Survey of Error Concealment
    techniques: Research directions and open issues," 2015 Picture Coding Symposium
    (PCS), Cairns, QLD, 2015, pp. 233-238.
    [12] W.M. Lam, A. R. Reibman, and B. Liu, "Recovery of lost or erroneously received
    motion vectors," in IEEE International Conference on Acoustics, Speech, and Signal
    Processing, 1993. ICASSP-93. IEEE, 1993, vol. 5, pp. 417-420.
    [13] C. Liu, R. Ma, and Z. Zhang, "Error concealment for whole frame loss in HEVC"
    in Advances on Digital Television and Wireless Multimedia Communications, pp.
    271-277. Springer, 2012.
    [14] F. Ramos, C. Uribe and R. Cumplido, "Video Error Concealment Based on Data
    Hiding for the Emerging Video Technologies", Lecture Notes in Computer Science,
    Image and Video Technology, 2014.
    [15] Y. Chang and Z. Chen, "Motion Compensated Error Concealment for HEVC
    Based on Block Merging and Residual Energy", 20th IEEE International Packet Video
    Workshop, December 2013.
    [16] T. Lin, N. Yang and R. Syu, "Error Concealment Algorithm for HEVC Coded
    Video Using Block Partition Decisions", IEEE International Conference on Signal
    Processing, Communication and Computing (ICSPCC), August 2013.
    [17] Vinayagam Mariappan, "HEVC VIDEO CODEC FOR NEXT GENERATION
    BROADCASTING TECHNOLOGY" www.linkedin.com
    [18] ISO/IEC. "Generic coding of moving pictures and associated audio information
    video", MPEG-2 Standard ISO/IEC, pp. 1-2, 1994.
    [19] F. Bossen, "Common test conditions and software reference configurations",
    JCTVC-E 700, 2011.
    [20] K. Tan, A. Pearmain, "An improved FMO slice grouping method for error
    resilience in H.264/AVC[C]", in Proc. IEEE ICASSP2010, pp.1442-1445, Mar.
    2010.
    [21] Y. Guo, Y. Chen, Y. Wang, H. Li, M. Hannuksela, and M. Gabbouj, "Error
    resilient coding and error concealment in scalable video coding", IEEE Trans. Circuits
    Syst. Video Technol, Vol.19, No. 6, pp. 781-795, Jun. 2009.
    [22] Y. Zhang, H. Xiong, Z. He, S. Yu, and C.-W. Chen, "An error resilient
    video coding scheme using embedded Wyner-Ziv description with decoder side
    non-stationary distortion modeling", EEE Trans. Circuits Syst. Video Technol, Vol.
    21, No. 4, pp. 498-512, Apr. 2011.
    [23] D. Marpe et al. "Video Compression Using Nested Quadtree Structures, Leaf
    Merging, and Improved Techniques for Motion Representation and Entropy Coding",
    IEEE Trans. Circuits Syst. Video Technol, Vol. 20, No. 12, pp. 1676-1687, 2010.
    [24] M. Wien, "Variable Block-Size Transforms for H.264/AVC", IEEE Trans. CSVT,
    Vol.13, No. 7, pp. 604-613, Jul. 2003.
    [25] S. R. Smoot, "Study of DCT coefficient distributions", in Proc. SPIE Symp.
    Electronic. Imaging, Feb. 1996.
    [26] Jung-Hye Min, Sunil Lee, etc., "Unification of the Directional Intra Prediction
    Methods in TMuC", JCT-VC document JCTVC-B100, pp. 21-28, Jul. 2010.
    [27] T. Tan, F. Bossen, "TE5: Results for Simplification of Unified Intra Prediction",
    JCT-VC document JCTVC-C042, Oct. 2010
    [28] J. Lainema, K. Ugur, "Intra Picture Coding With Planar Representations", 28th
    Picture Coding Symposium, 2010.
    [29] L. Zhao, L. Zhang, S.W. Ma, D.B. Zhao, "Fast mode decision algorithm for intra
    prediction in HEVC", Visual Communications and Image Processing (VCIP), 2011
    IEEE, pp.1- 4, Nov. 2011.
    [30] T. Tan, W. Han, B. Bross, BoG report of CE9: Motion vector coding[C],
    JCTVC-D441, 2011.
    [31] J Ohm, G J Sullivan, H Schwarz, Thiow Keng Tan, and T Wiegand.
    "Comparison of the Coding Efficiency of Video Coding Standards 2014.
    [32] J Ohm, G J Sullivan, H Schwarz, Thiow Keng Tan, and T Wiegand.
    Efficiency Video Coding (HEVC). Circuits and Systems for Video Technology, IEEE
    Transactions on, 22(12):1669-1684, 2012.
    [33] J Sole, R Joshi, Nguyen Nguyen, Tianying Ji, M Karczewicz, G Clare, F Henry,
    and A Duenas. Transform Coefficient Coding in HEVC. Circuits and Systems for
    Video Technology, IEEE Transactions on, 22(12):1765-1777, 2012

    QR CODE
    :::