| 研究生: |
賴政仁 Cheng-jen Lai |
|---|---|
| 論文名稱: |
台灣地區大氣氣膠特性之研究-高雄及台北都會區單顆粒氣膠及混合氣膠與污染來源推估 The study of atmospheric aerosols in Taiwan - the characteristics and sources of single particles and bulk aerosols in Kao-hsiung and Taipei areas. |
| 指導教授: |
李崇德
Chung-Te Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 氣膠 、單顆微粒 、電腦控制掃描式電子顯微鏡 、聚類分析 、碎形維度 、類神經網路 、絕對主成份分析 、氣膠混合相分析 |
| 外文關鍵詞: | aerosol, individual particle, CCSEM, cluster analysis, fractal dimension, neural network, APCA, aerosol bulk analysis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣膠為法規污染物中最常造成造成空氣污染指數(PSI)不良(unhealthy)的原因之一,氣膠不但會對人體健康造成危害,降低環境能見度,亦會對氣候變遷造成影響;國內外量測氣膠的大型研究計劃已積極進行中,希望進一步求得時間、空間解析度上更縝密的資料,對氣膠物理、化學更深入的了解,獲得資料亦可支援其它相關研究,或提供訂定空氣污染管制策略時參考。
本研究以蜂巢式套管採樣器採集粒徑小於2.5μm的細粒氣膠,採樣站選定環保署台北新莊站及高雄小港站,以比較典型工業都會區及非工業都會區氣膠污染特性,所得結果亦可直接與附近環保署測站的連續監測值進行比對;採得樣品主要以電腦控制掃描式電子顯微鏡(CCSEM)分析單顆粒氣膠的元素組成,並選取代表性氣膠獲取高解析度影像,元素組成數據以聚類分析、因子分析推估可能污染來源,顯微影像以碎形維度進行量化計算,並以鑑別分析、類神經網路評估氣膠元素組成資料庫進一步利用的成效;混合氣膠樣品則分析氣膠的質量濃度、水溶性離子、OC/EC及金屬離子,所得結果轉換成元素濃度百分比後與CCSEM分析結果進行比對,或直接以絕對主成份進行污染源貢獻量推估。
聚類分析結果可將台北站分成18類,其中氣膠個數較多的主要類別有6個;高雄站則可分成16類,主要類別有5類,其中柴油引擎廢氣類別氣膠數佔所有氣膠數台北站為39%,高雄站則佔53%;因子分析結果兩站都有6類主要污染來源,台北站包含:木材農廢燃燒及二次氣膠、工業污染、塵土及鍋爐燃燒,肥料、水泥及生物氣膠、鋼鐵工業等六類;高雄站6類中有五類與台北站相當,另一類則為海鹽及工業冶煉程序;顯微影像以碎形維度量化計算後,可依氣膠邊界破碎程度、投影面積密實度及表面粗糙度將不同氣膠表現於三個碎形維度所形成的空間座標中的不同位置;鑑別分析與類神經網路兩種方法可對其它未分類氣膠進行鑑定,或對已分類氣膠進行評估。
混合相分析結果兩站未分析約佔21%、碳含量37%、水溶性離子則佔39%,其餘金屬約為3%;以受體模式(絕對主成份分析)推估台北站及高雄站主要有4個污染來源,其中與人為及工業排放有關的NO3-、NH4+及SO42-,出現在兩站的主要二個類別,佔PM2.5質量濃度達78%,台北站則佔59%。
整體來說CCSEM分析結果與混合相分析結果各主要元素所佔的百分比具有類似的趨勢;因子分析及絕對主成份分析所推估的污染源類別多以混合來源為主,而聚類分析所得類別則具有更佳的解析度,可將混合污染源解析至更細的類別。但以單顆粒氣膠的元素組成資訊進行污染源推估對於某些元素組成相近但來源不同的氣膠仍無法分離,必須輔以其它資訊才能合理地將不同類別分離。
In order to compare the characteristics of fine particles between typical industrial urban and non-industrial urban, we collected PM2.5 by using Honeycomb denuders from Sin-chung and Shao-gawn sites situated in Taipei metropolitan area and Kao-hsiung city, respectively. Particles were collected on PC (polycarbonate) filters and analyzed with CCSEM (computer controlled scanning electron microscopy) to characterize elemental composition and morphology of individual particles. Source apportionment of particles were conducted on elemental composition using statistical cluster and factor analyses. The discriminate analysis and neural network were applied to classify unsorted particle into target category based on known data set or to assess the classified data. Morphology of selected particles was quantified using fractal algorithm on their boundary, projected area, and surface roughness, respectively. Meanwhile, aerosol bulk properties like mass, water-soluble ions, carbonaceous contents, and metal concentrations were obtained from collocated filter samples. The APCA (absolute principal component analysis) was applied for source apportionment of particles to compare that from CCSEM data.
Cluster analysis classifies Taipei aerosols into 18 categories with 6 are major categories. In contrast, Kao-hsiung aerosols are classified into 16 categories and with 5 major ones. In both site C, O rich particles are predominant, 39% and 53% particles can be attributed to diesel vehicle exhausts from Taipei and Kao-hsiung, respectively. The results were further confirmed by the discriminate analysis and neural network algorithm. Simultaneously, factor analysis shows 6 source types both in Taipei (wood burning and secondary, industry, soil and boiler, fertilizer, cement and bioaerosol, and ferrous furnace) and in Kao-hsiung (sea-salt and industry, industry, soil and boiler, fertilizer, cement and bioaerosol, ferrous furnace). A Cartesian coordinate system for fractal dimensions on boundary, projected area, and surface roughness from single particles is established to identify particles from different sources.
Aerosol bulk analysis reveals the averaged fraction of carbon in PM2.5 is 37%, that of water-soluble ion is 39%, that of metal is 3%, and the remaining 21% is unknown. The receptor model(APCA) estimates 4 different source types contributing to both sites, among them industrial sources containing precursors of NO3-, NH4+and SO42- is the major one. This source type accounts for 59% and 78% of PM2.5 in Taipei and Kao-hsiung area, respectively.
Finally, single particle and bulk analysis are agreed in reconstructed elemental compositions in this study. The source types apportioned from factor analysis and APCA are mixed compared to more resolved ones from cluster analysis. However, supplemental information is needed to resolve source contributions for particles with similar elements.
王竹方、林美季(1992)「X-射線譜術之探討與運用」,清華大學原子科學所碩士論文。
王竹方、林美季(1992)「X-射線譜術之探討與運用」,清華大學原子科學所碩士論文。
周崇光(1996)「結球氣膠的產生及其碎形維度之研究」,國立中央大學土木工程研究所博士論文。
林平全(1989)「飛灰混凝土」,科技圖書,初版,台北,台灣。
陳順宇(1998)「多變量分析」,華泰書局,初版,台北,台灣。
陳順宇(1998)「統計學」,華泰書局,三版,台北,台灣。
陳順宇(1998)「統計學」,華泰書局,三版,台北,台灣。
黃俊英(1991)「多變量分析」,中國經濟企業研究所,第四版,台北,台灣。
黃俊英、林震岩(1994)「SAS精析與實例」,華泰書局,初版,台北,台灣。
葉怡成(1997)「類神經網路模式應用與實作」,儒林圖書有限公司,五版,台北、台灣。
葉怡成(1997)「類神經網路模式應用與實作」,儒林圖書有限公司,五版,台北、台灣。
顏月珠(1994)「統計學」,三民書局,四版,台北,台灣。
蔣本基等(1994)「空氣污染受體模或及危險性評估在空氣品質管理上之應用研究」,EPA-83E3F1-09-01。
羅積玉(1990)「多元統計分析方法與應用」,科技圖書有限公司,台北,台灣。
環境保護署(1993)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1994)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1995)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1996)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1997)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1998)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
環境保護署(1998)「中華民國臺灣地區環境保護統計年報」,行政院環境保護署統計室。
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, pp.359.
Berner, A., Levin, I., Klinger, L. and Brandon, D. G., Determination of the mean size of sub micron particles by electron probe microanalysis, X-ray spectrometry, Vol. 24, pp. 13-18, 1995.
Berner, A., Levin, I., Klinger, L. and Brandon, D. G., Determination of the mean size of sub micron particles by electron probe microanalysis, X-ray spectrometry, Vol. 24, pp. 13-18, 1995.
Blashfield, R. K., Mixture Model Tests of Cluster Analysis: Accuracy of Four Agglomerative Hierarchical Methods, Psychol. Bull., Vol. 83, pp.377-388, 1976.
Boshoff, H. F. V., Personal communication, Department of Electronic Engineering, University of Stellenbosch, Stellenbosch 7600, South Africa, 1992.
Boshoff, H. F. V., Personal communication, Department of Electronic Engineering, University of Stellenbosch, Stellenbosch 7600, South Africa, 1992.
Brown, G. J., Miles, N. J. and Hall, S. T., Fractal Characterization of Pulverized Materials, Part. Syst. Charact., Vol. 10, pp.1-6, 1993.
Brown, G. J., Miles, N. J. and Hall, S. T., Fractal Characterization of Pulverized Materials, Part. Syst. Charact., Vol. 10, pp.1-6, 1993.
Carpenter, G. A. and Grossberg, S., ART 2: self-organization of stable category recognition codes for analog input patterns, Applied Optics, Vol. 26, pp. 4919-4930, 1987.
Carpenter, G. A. and Grossberg, S., ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures, Neural Networks, Vol. 3, pp. 129-152, 1989.
Carpenter, G. A., Grossberg, S. and Rosen, D. B., ART 2A: An adaptive resonance algorithm for rapid category learning and recognition, Neural Networks, Vol. 4, pp. 493-504, 1991a.
Carpenter, G. A., Grossberg, S. and Rosen, D. B., ART 2A: An adaptive resonance algorithm for rapid category learning and recognition, Neural Networks, Vol. 4, pp. 493-504, 1991a.
Carson, P. G., et al., On-line chemical analysis of aerosol by rapid single-particle mass spectrometry, J. Aerosol Sci., Vol. 26, pp. 535-545, 1995.
Carson, P. G., et al., On-line chemical analysis of aerosol by rapid single-particle mass spectrometry, J. Aerosol Sci., Vol. 26, pp. 535-545, 1995.
Carson, P. G., et al., On-line chemical analysis of aerosol by rapid single-particle mass spectrometry, J. Aerosol Sci., Vol. 26, pp. 535-545, 1995.
Chabas, A. and Lefevre, R. A., Chemistry and microscopy of atmospheric particulates at Delos, Vol. 34, pp. 225-238, 2000a.
Chabas, A. and Lefevre, R. A., Chemistry and microscopy of atmospheric particulates at Delos, Vol. 34, pp. 225-238, 2000a.
Chabas, A. and Lefevre, R. A., Chemistry and microscopy of atmospheric particulates at Delos, Vol. 34, pp. 225-238, 2000a.
Clark, K. C., Computation of the Fractal Dimension of Topographic Surfaces Using the Triangular Prism Surface Area Method, Comput. Geosci., Vol. 12, pp. 713-722, 1986.
Cleary, T., Samson, R. and Gentry, J. W., Methodology for Fractal Analysis of Combustion Aerosols and Particles Clusters, Aerosol Sci. & Technol., Vol. 12, pp. 518-525, 1990.
Cornille, P. and Maenhaut, W., Sources and Characterization of the Atmospheric Aerosol Near Damascus, Syria, Atmos. Environ., Vol. 24A, No. 5, pp. 1083-1093, 1990.
Crawley, J. and Sievering, H., Factor-Analysis of the Map3S/Raine Precipitation Chemistry Network - 1976-1980, Atmospheric Environment, Vol. 20, pp. 1001-1013, 1986.
Cullity, B. D., Elements of X-ray diffraction, Addison-wealey publighing, MA, 1987.
Cullity, B. D., Elements of X-ray diffraction, Addison-wealey publighing, MA, 1987.
Cullity, B. D., Elements of X-ray diffraction, Addison-wealey publighing, MA, 1987.
Cullity, B. D., Elements of X-ray diffraction, Addison-wealey publighing, MA, 1987.
Cullity, B. D., Elements of X-ray diffraction, Addison-wealey publighing, MA, 1987.
Ebert, M., Wenbruch, S., hoffmann, P. and Ortner, H. M., Chemical characterization of north sea aerosol particles, J. aerosol Sci., Vol. 31, No. 5, pp. 613-632, 2000.
Ebert, M., Wenbruch, S., hoffmann, P. and Ortner, H. M., Chemical characterization of north sea aerosol particles, J. aerosol Sci., Vol. 31, No. 5, pp. 613-632, 2000.
Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, New York: John Wiley & Sons, 1990.
Fausett, L., Fundamentals of Neural Networks, Prentice Hall, New Jersey, 1994.
Fausett, L., Fundamentals of Neural Networks, Prentice Hall, New Jersey, 1994.
Fausett, L., Fundamentals of Neural Networks, Prentice Hall, New Jersey, 1994.
Fausett, L., Fundamentals of Neural Networks, Prentice Hall, New Jersey, 1994.
Fausett, L., Fundamentals of Neural Networks, Prentice Hall, New Jersey, 1994.
Goldstein, J. I., et al., Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, 1992.
Gupta et al., computer-controlled scanning electron microscopy of minerals in coal-implication for ash deposition, Prog. Energy Combust. Sci. Vol. 24, pp. 523-543, 1998.
Henry, R. C., Lewis, C. W., Hopke, P. K. and Williamson, H. J., Review of Receptor Model Fundamentals, Atmospheric Environment, Vol. 18, pp. 1507-1515, 1984.
Henry, R. C., Lewis, C. W., Hopke, P. K. and Williamson, H. J., Review of Receptor Model Fundamentals, Atmospheric Environment, Vol. 18, pp. 1507-1515, 1984.
Hoornaert, S., Van Malderen, H. and Van Grieken, R., Gypsum and other Calcium-rich aerosol particles above the north sea, Environ. Sci. & Technol., vol. 30, pp. 1515-1520, 1996.
Hopke, P., Receptor modelling in Environmental Chemistry. Wiley, New York, 1985.
Hopke, P., Receptor modelling in Environmental Chemistry. Wiley, New York, 1985.
Huang, J. G. and Turpin, B., Reduction of sampling and analytical errors for electron microscopic analysis of atmospheric aerosols, Atmospheric Environment, Vol. 30, pp. 4137-4148, 1996.
Huang, J. G. and Turpin, B., Reduction of sampling and analytical errors for electron microscopic analysis of atmospheric aerosols, Atmospheric Environment, Vol. 30, pp. 4137-4148, 1996.
Jamebers, W., De Bock, L. and Van Grieken, R., Recent Advances in the Analysis of Individual Environmental Particles, a review, Analyst, Vol. 120, pp. 681-692, 1995.
Jamebers, W., De Bock, L. and Van Grieken, R., Applications of Micro-analysis to Individual Environmental Particles, Fresenius J. Anal Chem., Vol. 355, pp. 521-527, 1996a.
Jamebers, W., De Bock, L. and Van Grieken, R., Present and Future Applications of Beam Techniques in Environmental Microanalysis, Trends in Analysis Chemistry, Vol. 15, pp. 114-122, 1996b.
Jamebers, W., De Bock, L. and Van Grieken, R., Present and Future Applications of Beam Techniques in Environmental Microanalysis, Trends in Analysis Chemistry, Vol. 15, pp. 114-122, 1996b.
Jamebers, W. and Van Grieken, R., Single Particle Characterization of Inorganic Suspension in Lake Baikal, Siberia, Environ. Sci. & Technol., pp. 1525-1533, 1997.
Katrinak, K. A., Anderson, J. R. and Buseck, P. R., Individual Particle Types in the Aerosol of Phoenix, Arizona, Environ. Sci. & Technol., vol. 29, pp. 321-329, 1995.
Katrinak, K. A., Anderson, J. R. and Buseck, P. R., Individual Particle Types in the Aerosol of Phoenix, Arizona, Environ. Sci. & Technol., vol. 29, pp. 321-329, 1995.
Kaye, B. H., Characterizing the Structure of Fumed Pigments Using the Concepts of Fractal Geometry, Part. Syst. Charact., Vol. 8, pp. 63-71, 1991.
Kim, D. and Hopke, P.K., Classification of Individual Particles Based on Computer-Controlled Scanning Electron-Microscopy Data, Aerosol Science and Technology, Vol 9, pp. 133-151, 1988.
Kleinbaum, D. G., et al., Applied Regression Analysis and other Multivariable Methods, Duxbury Press, Pacific Grove, 1998.
Kleinman, M. T., Identifying and estimating the relative importance of source of airborne particulates. Environ. Sci. Tech., Vol. 14, pp. 52-65, 1980.
Kleinman, M. T., Identifying and estimating the relative importance of source of airborne particulates. Environ. Sci. Tech., Vol. 14, pp. 52-65, 1980.
Liebovitch, L. S. and Toth T., A Fast Algorithm to Determine Fractal Dimensions by Box Counting, Phy. Lett. A, Vol. 141, pp. 386-390, 1989.
Lee, C. T. and Chou. C. K., Application of Fractal Geometry in Quantitative Characterization of Aerosol Morphology, Part. Syst. Charact., Vol. 11, pp. 436-441, 1994.
Lee, C. T. and Chou. C. K., Application of Fractal Geometry in Quantitative Characterization of Aerosol Morphology, Part. Syst. Charact., Vol. 11, pp. 436-441, 1994.
Maloy, K. J., Jossang, T., Boger, F. and Feder, J., Fractal Structure of Hydrodynamic Dispersion in Porous-Media, Physical Review Letters, Vol. 61, pp. 2925-2928, 1988.
Mamame, Y. and DePena, R. G., A quantitative method for the detection of individual submicrometer size sulfate particles, Atmospheric Environment Vol. 12, pp. 69-82, 1978.
Mamame, Y., Estimate of municipal incinerator contribution to philadelphia aerosol. Ⅰ. Source analysis. Atmospheric Environment, Vol. 22, pp. 2411-2418, 1988.
Mamame, Y., Estimate of municipal incinerator contribution to philadelphia aerosol. Ⅰ. Source analysis. Atmospheric Environment, Vol. 22, pp. 2411-2418, 1988.
Mamame, Y., Estimate of municipal incinerator contribution to philadelphia aerosol. Ⅰ. Source analysis. Atmospheric Environment, Vol. 22, pp. 2411-2418, 1988.
Mandelbort, B. B., The Fractal Geometry of Nature, W. H. Freeman, San Francisco., 1982.
Mcmurry, P. H., A review of atomospheric aerosol measurements, Atomospheric Environment, Vol. 34, pp. 1959-1999, 2000.
Ohta, S. and Okita, T., A Chemical Characterization of Atmospheric Aerosol in Sapporo., Atmos. Envion., Vol. 24A, pp. 815-822, 1990.
Ohta, S. and Okita, T., A Chemical Characterization of Atmospheric Aerosol in Sapporo., Atmos. Envion., Vol. 24A, pp. 815-822, 1990.
Pacyna, J., Estimation of atmospheric emissions of trance elements form anthropogenic sources in Europe, Atomspheric Environment, Vol. 18, pp. 41-50, 1984.
Pardess, D., Levin, Z. and Ganor, E., Anew method for measuring the mass of sulfur in single aerosol particles, Atmospheric Environment, Vol. 26A, pp. 675-680, 1992.
Prather, K. A., Nordmeyer, T. and Salt, K., Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry, Anal. Chem., Vol. 66, pp. 1403-1407, 1994.
Punj, G. and Stewart, D. W., Cluster Analysis in Marketing Research: A Review and Suggestions for Application, J. of Marketing Res., Vol. 20, pp. 134-148, 1983.
Punj, G. and Stewart, D. W., Cluster Analysis in Marketing Research: A Review and Suggestions for Application, J. of Marketing Res., Vol. 20, pp. 134-148, 1983.
Punj, G. and Stewart, D. W., Cluster Analysis in Marketing Research: A Review and Suggestions for Application, J. of Marketing Res., Vol. 20, pp. 134-148, 1983.
Punj, G. and Stewart, D. W., Cluster Analysis in Marketing Research: A Review and Suggestions for Application, J. of Marketing Res., Vol. 20, pp. 134-148, 1983.
Saucy, D. A., Anderson, J. R. and Buseck, P. Cluster Analysis Applied to Atmospheric Aerosol Samples from the Norwegian Arctic, Atmos. Environ., Vol. 21, pp. 1649-1657, 1987.
Schwoeble, A. J., Dalley, A. M., Henderson, B. C. and Casuccio, G. S., Computer-controlled SEM and microimaging of fine particles, Journal of Metals, pp. 10-14, August, 1988.
Schwoeble, A. J., Dalley, A. M., Henderson, B. C. and Casuccio, G. S., Computer-controlled SEM and microimaging of fine particles, Journal of Metals, pp. 10-14, August, 1988.
Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, New York, 1996.
Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, New York, 1996.
Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, New York, 1996.
Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, New York, 1996.
Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, New York, 1996.
Takeuchi, K., Yanai, H. and Mukherjee, B. N., The Foundations of Multivariate Analysis, John Wiley and Sons Inc., pp. 458, 1982.
Takeuchi, K., Yanai, H. and Mukherjee, B. N., The Foundations of Multivariate Analysis, John Wiley and Sons Inc., pp. 458, 1982.
Takeuchi, K., Yanai, H. and Mukherjee, B. N., The Foundations of Multivariate Analysis, John Wiley and Sons Inc., pp. 458, 1982.
U.S. Environmental Protection Agency, Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17, 1997a.
U.S. Environmental Protection Agency, Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17, 1997a.
U.S. Environmental Protection Agency, Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17, 1997a.
U.S. Environmental Protection Agency, Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17, 1997a.
U.S. Environmental Protection Agency, Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17, 1997a.
U.S. Environmental Protection Agency, Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62(138): 38651-38760, July 17, 1997a.
Van Malderen, H., Rojas, C. and Rrieken, R., Characterization of Individual Giant Aerosol Particle Above the North Sea, Enviorn. Sci. & Technol., Vol. 26, pp. 750-756, 1992.
Van Malderen, H., Rojas, C. and Rrieken, R., Characterization of Individual Giant Aerosol Particle Above the North Sea, Enviorn. Sci. & Technol., Vol. 26, pp. 750-756, 1992.
Van Malderen, H., Van Grieken, R. and Khodzher, T., Composition of Individual Aerosol Particles Above Lake Baikal, Siberia, Atmos. Environ., Vol. 30, pp. 1453-1465, 1996b.
Wang, C. S., Areview of Current Studies on Fine Particles in Ambient Aerosols in Taiwan, Workshop on Recent Research and Development of PM2.5, Taipei, Taiwan, 1999.
Ward, J. H., Hierarchical Grouping to Optimize an Objective Function, J. of American Statistic Associ., Vol. 58, pp. 236-244, 1963.
Weingartner, E., Burtscher, H. and Baltensperger, U., Hygroscopic properties of carbon and diesel soot particels, Atmospheric Environment, vol. 31, pp. 2311-2327, 1997.
Weingartner, E., Burtscher, H. and Baltensperger, U., Hygroscopic properties of carbon and diesel soot particels, Atmospheric Environment, vol. 31, pp. 2311-2327, 1997.
Wigley et al., The distribution of mineral matter in pulverised coal particles in elation to burnout behaviour, Fuel Vol. 13, pp. 1283-1288, 1997.
Willeke, K. and Baron, P. A., Aerosol Measurement, Van Nostrand Reinhold, New York, 1993.
Wilson, T. R. S., Salinity and the Major Elements of Sea Water, Chemical Oceanography, J. P. Riley and G. Skirrow (eds.), Academic, Orlando, Fla, 1, 2nd edtion., 1975.
Wilson, T. R. S., Salinity and the Major Elements of Sea Water, Chemical Oceanography, J. P. Riley and G. Skirrow (eds.), Academic, Orlando, Fla, 1, 2nd edtion., 1975.
Wouters, L., Hagedoren, S., Dierck, I., Artaxo, P. and Van Grieken, R., Laser microprobe mass analysis of Amazon basin aerosols. Atomspheric Environment, Vol. 27A, pp. 661-668, 1993.
Wouters, L., Hagedoren, S., Dierck, I., Artaxo, P. and Van Grieken, R., Laser microprobe mass analysis of Amazon basin aerosols. Atomspheric Environment, Vol. 27A, pp. 661-668, 1993.
Xie, Y., Hopke, P. K., Casuccio, G. and Henderson, B., Use of Chain Code histogram method to quantify airborne particle shapes, Aerosol Science and Technology, Vol. 21, pp. 210-218, 1994b.
Xie, Y., Hopke, P. K., Casuccio, G. and Henderson, B., Use of Chain Code histogram method to quantify airborne particle shapes, Aerosol Science and Technology, Vol. 21, pp. 210-218, 1994b.
Xie, Y., Hopke, P. K., Casuccio, G. and Henderson, B., Use of Chain Code histogram method to quantify airborne particle shapes, Aerosol Science and Technology, Vol. 21, pp. 210-218, 1994b.
Yoshizumi, K. and Hoshi, A., Size Distribution of Ammonium Nitrate and Sodium Nitrate in Atmospheric Aerosol, Environ. Sci. & Technol., Vol. 19, pp. 258-261, 1985.
Zou, L. Y. and Hooper, M. A., Size-resolved airborne particles and their morophology in central Jakarta, Atmospheric environment, Vol. 31, pp. 1167-1172, 1997.