| 研究生: |
譚曉天 Xiao-Tian Tan |
|---|---|
| 論文名稱: |
大型都市垃圾焚化廠之氯化氫排放特性探討 Characteristics of HCl Emitted from Large-Scale Municipal Waste Incinerators |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 氯化氫排放趨勢 、焚化系統氯流布 、廢棄物含氯量 |
| 外文關鍵詞: | Emission trends of HCl, Chlorine flow, Chlorine content |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用行政院環境保護署垃圾焚化廠管理系統(SWIMS)及焚化廠自主檢測之公開數據,在廢棄物型態及空氣污染物防制設備型態兩種不同之操作條件下,挑選我國四座大型都市垃圾焚化廠(A、B、C及D廠)進行2011年至2021年期間之HCl排放濃度趨勢分析,並以D廠進一步討論都市垃圾廢棄物焚化後氯之流布。結果顯示,使用濕式處理技術之焚化廠排放濃度最低,年平均排放濃度為4.7 ± 0.6 ppm;使用乾式或半乾式除酸系統之焚化廠,於收受廢棄物類型不同狀態下年平均排放濃度介於12 ppm 至18 ppm 之間。以焚化廠D進行氯流布分析計算,統計2017年至2021年期間,各節點氯含量分別為底渣每公克10~30毫克;鍋爐灰每公克100~140毫克;反應集塵灰每公克180~380毫克及煙道氣濃度為每立方公尺13~23毫克,其中反應集塵灰因包含去除氯化氫時之反應物故數值較高。依氯流布計算,焚化系統中底渣占比28~38 %;鍋爐灰占比5~8 %;反應集塵灰占比53~65 %及煙道氣占比1~2 %。以氯流布回推廢棄物進廠氯含量發現在0.62%至0.89 %之間,高於採樣分析結果0.09至0.20 %。除酸設施搭配集塵設備對氯化物平均處理效率為97 %至98 %;在鹼劑使用量上,處理每公噸廢棄物所投入之鹼劑用量,由消石灰變更為小蘇打後,其平均使用量降低。
This study applies the public data compiled by the Solid Waste Incinerator Management System (SWIMS) of the Environmental Protection Administration, the Executive Yuan to investigate the emission characteristcs of HCl from four large-scale municipal waste incinerators (MWIs) operated under two different operating conditions. The HCl emission data of the incinerators were collected to analyze the emission trend of HCl during the period from 2011 to 2021 and one MWI was selected for the analysis of chlorine flows. The results show that the average HCl concentration emitted from the incinerator equipped with wet scrubber technology is 4.7 ± 0.6 ppm while that emitted from the incinerators using dry or semi-dry systems varies from 12 ppm to 18 ppm.The results of the chlorine flow in incinerator D show that the chlorine content in bottom ash is 10~30 mg/g, 100~140 mg/g in boiler ash, 180~380 mg/g in fly ash and 13~23 mg/Nm3 in flue gas. The reason for the higher chlorine content in the fly ash is due to the injection of the alkali agent for removing HCl. The chlorine flows established for MWI D show that the bottom ash accounts for 28~38%, the boiler ash accounts for 5~8%, the fly ash accounts for 53~65% and the flue gas accounts for 1~2% of total chlorine flows. The chlorine contents of the feeding wastes in four MWIs are calculated via back calculation and the results are within the range of 0.62 to 0.89%, which is significantly higher than the results (0.09 to 0.20%) obtained from waste analysis. The average removal efficiency of HCl is 97 to 98%. Moreover, the average amount of alkali agent used in treating one ton of waste is reduced after changing from calcium hydroxide to sodium bicarbonate as alkaline agent.
Addink, R., Bakker, W.C., Olie, K., "Influence of HCl and Cl2 on the Formation of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans in a Carbon/Fly Ash Mixture.", Environmental Science & Technology, Volume 29, Pages 2055-2058, (1995)
Allal, K.M., Dolignier, J.C., Martin, G., "Reaction Mechanism of Calcium Hydroxide with Gaseous Hydrogen Chloride.", Revue de l'Institut Français du Pétrole, EDP Sciences, Volume 53, Pages 871-880., (1998)
Australia government, National Pollutant Inventory Substance Fact Sheets, http://www.npi.gov.au/resource/hydrochloric-acid
Chang, M.B., Huang, C.K., "Characteristics of Chlorine and Carbon Flow in Two Municipal Waste Incinerators in Taiwan", Journal of Environmental Engineering, Volume 128, Pages 1182-1187., (2002)
Chang, M.B., Lin, J.J., Chang, S.H., "Characterization of Dioxin Emissions from Two Municipal Solid Waste Incinerators in Taiwan", Atmospheric Environment, Volume 36, Pages 279-286., (2002)
Cooper, C.D., Alley, F.C., "Air Pollution Control, A Design Approach, Third Edition", Taiwan, Published and Reprinted by Central Book Publishing Company, Taipei, Pages 480-481, (2006)
Dai, M., Yu,Z., Tang, Y., Ma, X., "HCl Emission and Capture Characteristics During PVC and Food Waste Combustion in CO2/O2 Atmosphere", Journal of the Energy Institute, Volume 93, Issue 3,Pages 1036-1044., (2020)
Davies M., "The High Temperature Oxidation and Corrosion of Irons and Steels", Cranfield Institute of Technology Department of Materials, Pages 11-14, (1973)
Kroll, P.J., Williamson, P., "Application of Dry Flue Gas Scrubbing to Hazardous Waste Incineration", Journal of the Air Pollution Control Association, Volume 36, Pages 1258-1263., (1986)
Li, C., Jia, Z., Ye, X., Yin, S., "Simulation on Deacidification Performance of Waste Incinerator Flue Gas by Rotating Spray Drying", Energy, Volume 152, Pages 652-665., (2018)
Löthgren, C.J., Bavel, B.V., "Dioxin Emissions after Installation of a Polishing Wet Scrubber in a Hazardous Waste Incineration Facility.", Chemosphere, Volume 65, Pages 405-412., (2005)
Mehr, J., Haupt, M., Skutan, S., Morf, L., Adrianto, L.R., Weibel, G., Hellweg, S., "The Environmental Performance of Enhanced Metal Recovery from Dry Municipal Solid Waste Incineration Bottom Ash", Waste Management, Volume 119, Pages 330-341, (2021)
Ozawa, S., Naruse, K., Ito, K., Kojima, Y., Matsuda, H., Mishima, S., Endo, M., Yanase, T., "Evolution of HCl from KCl, CaCl2 and NaCl in an SO2-O2-H2O Atmosphere under a Simulated Condition of Municipal Wastes Incineration.", Journal of Chemical Engineering of Japan, Volume 36, No. 7, Pages 867-873., (2003)
Schantz, M., Allen, J., Biehn, C., Glesmann, S., Hunt, G., Lehmkuhler, J., Norman, J., Park, D., Senior, C., Siedhoff, T., Silva, T., "Dry Sorbent Injection for Acid Gas Control : Process Chemistry, Waste Disposal and Plant Operational Impacts", Institute of Clean Air Companies., (2016)
Sorrels, J.L., Baynham, A., Randall, D.D., Laxton, R., "Section 5 SO2 and Acid Gas Controls", Air Economics Group Health and Environmental Impacts Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency, Research Triangle Park, NC 27711., (2021)
Srivastava, R.K., "Controlling SO2 Emissions A Review of Technologies.", U.S. Environmental Protection Agency, EPA/600/R-00/093, Washington, D.C., (2000)
Stantec, "A Technical Review of Municipal Solid Waste Thermal Treatment Practices Final Report Section 4: Air Emissions Controls." Waste to Energy Project,No. 1231-10166., (2011)
Suda, H., Uddin, M.A., Kato, Y., "Chlorine Removal from Incinerator Bottom Ash by Superheated Steam", Fuel, Volume 184, Pages 753-760, (2016)
Tillman, D.A., "Incineration of Municipal and Hazardous Solid Wastes", Academic Press, Inc., (1989)
Uchida, S., Kamo, H., Kubota, H., Kanaya, K., "Reaction Kinetics of Formatton of HCl in Municipal RefuseIncinerators", American Chemical Society, Volume 22, Pages 144-149., (1983)
Uchida, S., Kamo, H., Kubota, H., "The Source of HCl Emission from Municipal Refuse Incinerators", American Chemical Society, Volume 27, Pages 2188-2190., (1988)
Verhulst, D., Buekens, A., Spencer, P.J., Eriksson, G., "Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces", Environmental Science & Technology, Volume 30, Issue 1, Pages 50–56., (1996)
Wang, K.S., Chiang, K.Y., Lin, S.M., Tsai ,C.C., Sun,C.J., "Effects of Chlorides on Emissions of Hydrogen Chloride Formation in Waste Incineration", Chemospher, Volume 38, No.7, Pages 1571-1582., (1999)
Watanabe N., Yamamoto O., Sakai M., Fukuyama J., "Combustible and Incombustible Speciation of Cl and S in Various Components of Municipal Solid Waste.", Waste Management, Volume 24, No.6, Pages 623-632., (2004)
Wey, M.Y., Liu, K.Y., Yu,W.J., Lin, C.L., Chang, F.Y., "Influences of Chlorine Content on Emission of HCl and Organic Compounds in Waste Incineration Using Fluidized Beds", Waste Management, Volume 28, Issue 2, Pages 406-415., (2008)
Zhou, H., Meng, A., Long, Y., Li, Q., Zhang, Y., "Classification and Comparison of Municipal Solid Waste Based on Thermochemical Characteristics", Journal of the Air & Waste Management Association, Pages 597-616., (2014)
行政院環境保護署,〈107-108年度一般廢棄物最終處置前組成採樣及分析工作委託專案計畫〉,2020年。
行政院環境保護署,〈一般垃圾焚化產生有害空氣污染物處理技術〉,1999年。
行政院環境保護署,〈焚化底渣再生粒料應用於控制性低強度回填材料(CLSM)使用手冊〉,2015年。
行政院環境保護署,〈提升資源化產品品質及環境友善性評估專案計畫〉,2017年。
行政院環境保護署,〈109年度垃圾焚化廠飛灰減量與再利用推動專案工作計畫〉,2020年。
行政院環境保護署環保統計查詢網,取自https://statis91.epa.gov.tw/epanet/
行政院環境保護署垃圾焚化廠管理系統,取自https://swims.epa.gov.tw/index.aspx
行政院環境保護署,〈重大環境事件-戴奧辛污染事件〉,80-83頁,取自https://topic.epa.gov.tw/dl-11-e51e250833e949b3a36d46c5e9bb2ab8.html
垃圾焚化廠營運成果報告書,2019年。
垃圾焚化廠營運成果報告書,2020年。
垃圾焚化廠營運成果報告書,2021年。
屏東縣政府環境保護局,〈屏東縣崁頂垃圾焚化廠整建營運移轉案先期計畫書〉,2021年。
徐洪陞,〈都市垃圾焚化爐廢氣處理系統除酸功能穩定度提升之研究〉,碩士論文,國立中央大學環境工程研究所,2014。
張坤森、邱孔濱、陳麗萍、潘志明、鍾日熙,〈垃圾焚化飛灰特性、處理再利用技術、法規與未來展望〉,環境工程會刊,2012。
新北市政府環境保護局,〈八里垃圾焚化廠整建營運移轉案可行性評估〉,2020年。
新北市政府環境保護局,〈新北市進入焚化廠廢棄物之物理及化學組成分析報告〉,取自
https://www.epd.ntpc.gov.tw/UploadFile/infofreedom/20220505155155158630.pdf
臺南市政府環境保護局,〈臺南市城西垃圾焚化廠更新爐新建營運移轉促參案可行性評估報告〉,2020年。
〈廢棄物清理法〉,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=o0050001
武蔵野クリーンセンター
http://mues-ebara.com/