跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳家緯
Chia-Wei Chen
論文名稱: 染料敏化太陽能電池室內弱光智慧貼紙之研究
The Study of Dye-Sensitized Solar Cell for Low Light Level Wisdom Sticker
指導教授: 張榮森
Rong-Seng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 44
中文關鍵詞: 染料敏化波導
外文關鍵詞: DSSC, PDMS
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的核心概念是比較染料敏化太陽能電池(DSSC)與其他種類的太陽能電池在200~10000 Lux的光照環境,利用不同濃度的電解液具有不同穿透率的特性,因穿透率提升進而增加進光量,增加發電效率最多117%;與光波導元件的折射率差異,將照射至光波導元件的光線引導至自供電裝置中的DSSC,進而提高發電效率。本研究使用聚二甲基矽氧烷(PDMS)、 不同粒徑的散射型TiO2作為波導材料應用於DSSC電池表面,從低Lux到高Lux提升輸出功率51.3%~20%;再針對軟性DSSC的在軟性基材上的改良搭配軟性電路板,將軟板可撓模度從2.85降至1.07,達到整體軟性化的目標。


    This study compares dye-sensitized solar cells (DSSC) with other types of solar cells in a light environment of 200~10000 Lux. Because increase in penetration rates can enhance the brightness of the lighting and can vary in different concentrations of electrolyte, the characteristic is exploited to differentiate refractive index from the optical waveguide component to irradiate the light from the optical waveguide component to the DSSC in a self-powered device, thereby improving power generation efficiency. In this study, Polydimethylsiloxane (PDMS) and different particle size TiO2 were used as waveguide materials on the surface of DSSC cells to increase the output power from low Lux to high Lux by 51.3%~20%. An improved flexible circuit board was also used with the flexible DSSC to achieve the overall flexible goal.

    第一章、緒論 1 1-1 研究目的 1 1-2 文獻回顧 2 第二章、研究內容與方法 4 第三章、理論 6 3-1 染料敏化太陽能電池原理 6 3-2 染料敏化太陽能電池運作機制 7 3-3工作電極 10 3-4對電極 11 3-5染料 11 3-6電解液 12 3-7波導材料 13 3-8 可撓模數 15 第四章、 研究成果 16 4-1 實驗步驟 16 4-2 儀器設備 18 4-3 室內位置感測器運作模式 19 1.室內位置感測器步驟 19 2.室內位置感測器配置 19 3.室內位置感測器運作 20 4-4 氣體感測器運作模式 22 1.氣體感測器步驟 22 2. 氣體感測器配置 22 3.氣體感測器運作 22 4-5 實驗結果 24 第五章、 結論與未來展望 33 參考文獻 34

    [1] Yeong-Lin Lai, Yeong-Kang Lai2, Chun-Yi Zheng, Guo-Hui Xu, Yi-Ming Wang, and Shan-Ching Chen, “Fabrication of working and counter electrodes on plastic substrates for flexible dye-sensitized solar cells,” Matec Web of Conferences, Vol. 123, pp. 31, 2017.
    [2] Wilfried G.J.H.M. van Sark, Keith W.J. Barnham, and Lenneke H. Slooff, “Luminescent Solar Concentrators - A review of recent results,” Optics Express, Vol. 16, Issue. 26, pp. 21773-21792, 2008.
    [3] Michael G. Debije, Jean-Pierre Teunissen, Maud J. Kastelijn, Paul P.C. Verbunt, and Cees W.M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Solar Energy Materials and Solar Cells, Vol. 93, Issue. 8, pp. 1345-1350, 2009.
    [4] Jana Bomm, and Andreas Büchtemann, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Solar Energy Materials and Solar Cells, Vol.95, Issue. 8,pp.2087-2094, 2011.
    [5] L. Desmet, A. J. M. Ras, D. K. G. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Optics Express, Vol.37, Issue. 15, pp. 3087-3089, 2012.
    [6] L. H. Slooff, E. E. Bende, and A. R. Burgers, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Physica Status Solidi-Rapid Research Letter, Vol. 2, Issue. 6, pp. 257-259, 2008.
    [7] G. Maggioni, A. Campagnaro, and S. Carturan, “Dye-doped parylene-based thin film materials: Application to luminescent solar concentrators,” Solar Energy Materials and Solar Cells, Vol. 108, pp. 27-37, 2013.
    [8] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light toelectricity bycis-X2bis (2,2'-bipyridyl-4,4'- dicarboxylate) ruthenium (II)charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-)
    onnanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, Vol. 115, pp. 6382-6390, 1993.
    [9] J. Y. Kim, T. H. Kim, D. Y. Kim, N. G. Park, and K. D. Ahn, “Novel thixotropic gel electrolytes based on dicationic bis-imidazoliumsalts for quasi-solid-state dyesensitized solar cells,” Journal of Power Sources, Vol.
    175, pp. 692-697, 2008.
    [10] J. H. Yum, P. Chen, M. Grätzel, and M. K. Nazeeruddin, “Recent Developments in Solid-State Dye-Sensitized Solar Cells,” Chemsuschem, Vol. 1, pp. 699-707, 2008.
    [11] Jehan Akbar, Kiran Zeb, and Azhar Muhammad Naeem, “Dye-sensitized solar cells fabricated using a novel, 2, 4 DFP dye and standard N-719 and Z-907 dyes: a comparative study,” Optoelectronics and Advanced Materials: Rapid Communications, Vol. 12, pp. 168-170, 2018.

    QR CODE
    :::