跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李威
Wei Lee
論文名稱: Likelihood inference on bivariate competing risks models under the Pareto distribution
指導教授: 江村剛志
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 74
中文關鍵詞: 競爭風險富蘭克聯結函數二元柏拉圖分配肯德爾相關係數牛頓-拉弗森
外文關鍵詞: Competing risks, Frank copula, Bivariate Pareto distribution, Kendall's tau, Newton-Raphson
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究在二元柏拉圖分配下競爭風險(competing risks)資料的概似推論。第一個模型是邊際分配為柏拉圖分配的富蘭克聯結函數(Frank copula),第二個模型是由Sankaran以及Nair(1993)提出的二元柏拉圖分配(SNBP)。我們會介紹上述分配的資料生成演算法,推導出score function以及Hessian matrix的形式,並使用牛頓-拉弗森演算法(Newton-Raphson algorithm)來找出概似函數的最大值。我們利用圖形比較和信息標準來發展適合度檢定,我們設計了模擬研究來檢視我們的最大概似估計量,並檢查所有方法的正確性,最後使用一組真實資料來做分析。


    This thesis studies likelihood inference based on competing risks data under bivariate Pareto models. The first model is the Frank copula model with the Pareto marginal distributions. The second one is the Sankaran and Nair bivariate Pareto (SNBP) model, which is a bivariate Pareto distribution introduced by Sankaran and Nair (1993). We introduce data-generating algorithms from these distributions. We derive the forms of the score and Hessian matrix and develop a Newton-Raphson algorithm for maximizing the likelihood function. We develop goodness-of-fit methods by graphical plots and information criteria. We execute simulation study to examine the performance of the maximum likelihood estimators, checking the correctness of all our methods. Last we analyze a real dataset for illustration.

    Chapter 1 Introduction………………………………………………………………1 Chapter 2 Bivariate Pareto model……………………………………3 2.1 Pareto distribution (one dimensional)…………………………3 2.2 Copula function……………………………………………………4 2.3 The bivariate Pareto model with the Frank copula…………5 2.4 The SNBP distribution and the LSBP distribution…………6 Chapter 3 Competing risks analysis under the Frank copula model………………………………………………………………………7 3.1 Maximum likelihood inference under common margins………7 3.2 Maximum likelihood inference under different margins…12 3.3 Simulation…………………………………………………………16 Chapter 4 Competing risks analysis under the SNBP model……18 4.1 Maximum likelihood inference…………………………………18 4.2 Simulation…………………………………………………………22 Chapter 5 Goodness-of-fit……………………………………………24 Chapter 6 Simulation…………………………………………………27 Chapter 7 Data analysis………………………………………………42 Chapter 8 Conclusion…………………………………………………49 Appendix 1………………………………………………………………51 Appendix 2………………………………………………………………57 Appendix 3………………………………………………………………64 References………………………………………………………………65

    Arnold B.C. (2015) Pareto Distribution. Wiley StatsRef : Statistics Reference Online, DOI: 10.1002/9781118445112.
    Andrews D.F., Herzberg A.M. (1985) Data: A collection of problems from many fields for the student and research worker. Springer, New York.
    Emura T., Chen Y.H., Chen H.Y. (2012) Survival prediction based on compound covariate method under Cox proportional hazard models. PLoS ONE 7(10), DOI: 10.1371/journal.pone.0047627.
    Emura T., Nakatochi M., Murotani K., Rondeau V. (2015) A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, DOI: 10.1177/0962280215604510.
    Emura T., Nakatochi M., Matsui S., Michimae H., Rondeau V. (2017) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model. Statistical Methods in Medical Research, DOI: 10.1177/0962280216688032.
    Emura T., Chen Y.H. (2016) Gene selection for survival data under dependent censoring: A copula based approach. Statistical Methods in Medical Research, 25(6): 2840-2857.
    Escarela G., Carriere J.F. (2003) Fitting competing risks with an assumed copula. Statistical Methods in Medical Research, 12(4): 333-349.
    Efron B., Tibshirani R.J. (1993) An introduction to the Bootstrap. Boca Raton, New York.
    Fan T.H., Chen C.H. (2017) A Bayesian predictive analysis of step‐Stress accelerated tests in Gamma degradation‐based processes. Quality and Reliability Engineering International, DOI: 10.1002/qre.2114.
    Frank M.J. (1979) On the simultaneous associativity of and . Aequationes Matbematicae, 19: 194-226.
    Genest C. (1987) Frank’s family of bivariate distributions. Biometrika, 74(3): 549-555.
    Hu Y.H., Emura T. (2015) Maximum likelihood estimation for a special exponential family under random double-truncation. Computational Statistics, 30(4): 1199-1229.
    Hsu T.M., Emura T., Fan T.H. (2016) Reliability inference for a copula-based series system life test under multiple type-I censoring. IEEE Transactions on Reliability, 65(2): 1069-1080.
    Lawless J.F. (2003) Statistical models and methods for lifetime data (2nd ed.). A John WILEY & SONS, Hoboken, New Jersey.
    Lindley D.V., Singpurwalla N.D. (1986) Multivariate Distributions for the life lengths of components of a system sharing a common environment. Journal of Applied Probability, 23(2): 418-431.
    Mardia K.V. (1970) Families of Bivariate Distributions. Griffin's Statistical Monographs and Courses, London.
    Navarro J., Ruiz J.M. Sandoval C.J. (2008) Properties of systems with two exchangeable Pareto components. Statistical Papers, 49(2):177-190.
    Nelsen R.B. (2006) An introduction to copulas (2nd ed.). Springer, New York.
    Noughabi M.S., Kayid M. (2017) Bivariate quantile residual life: a characterization theorem and statistical properties. Statistical Papers, DOI: 10.1007/s00362-017-0905-9.
    R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3.2.1.
    Sankaran P.G., Nair N.U. (1993) A Bivariate Pareto model and its applications to reliability. Naval Research Logistics, 40(7): 1013-1020.
    Sankaran P.G., Kundu D. (2014) A Bivariate Pareto model. A journal of Theoretical and applied statistics, 48(2): 241-255.
    Sklar A. (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 8: 229-231.
    Shih J.H. (2016) Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula. Master thesis.

    QR CODE
    :::