| 研究生: |
李易昀 I-Yun Lee |
|---|---|
| 論文名稱: | Optimal Strategies for Index Tracking with Risky Constrains |
| 指導教授: | 孫立憲 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 市場追蹤 、最佳化投資策略 、動態編程原理 、哈密頓-雅可比-貝 爾曼方程 、二次逞罰方程 |
| 外文關鍵詞: | Market tracking, portfolio optimization, dynamic programming principle, Hamilton–Jacobi–Bellman equation, exact penalty function |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
指數追蹤在金融市場中是一種很流行的被動投資策略,追蹤問題是 藉由選取目標指數內含的股票種類所建立的資產組合來複製目標指數的 動向。此篇文章主要透過優化控制問題的方法建構模型來處理指數追蹤, 找出最佳化策略並提供證明。然而,追蹤指數時存在追蹤不穩定的問題, 當追蹤不穩定的情形發生時會造成過大的追蹤誤差。此研究中特地加入 對風險性資產的二次逞罰項及探討追蹤不穩定的情形,來減弱控制追蹤 不穩定的情形發生時造成過多的追蹤誤差。在實證研究中,使用 S&P 500 和美國股票顯示所提出的模型控制了追蹤的不穩定性,並且與無控 制風險的策略比較追蹤表現。
Index tracking is a popular passive investment strategy in finance. It refers to the problem of reproducing the performance of a stock market index by considering a portfolio of assets comprised on the index. This paper mainly attempts to construct a model based on the technique of the portfolio optimization problem through the linear quadratic regulator to trace closely an index. We obtain the optimal strategy using the dynamic programming and the corresponding HJB equation. However, we consider the problem of tracking instability when tracking the index through portfolio optimization. In this case would cause the excessive tracking error. Therefore, this research specifically joins the penalty quadratic term in risky assets and attempts to capture the tracking of unstable situations to weaken the tracking error. We show that the proposed model controls the tracking instability and compare the performance with the model that without joining the penalty quadratic term in risky assets using an empirical study of the S&P 500 and several individual stocks in the U.S.
[1] E. Ponsi, Technical Analysis and Chart Interpretations: A Comprehensive Guide to Understanding Established Trading Tactics for Ultimate Profit. John Wiley & Sons, 2016. [2] J. Liu, Y.-W. Si, D. Zhang, and L. Zhou, “Trend following in financial time series with multi-objective optimization,” Applied Soft Computing, vol. 66, pp. 149–167, May 2018. [3] W.-K. Wong, M. Manzur, and B.-K. Chew, “How rewarding is technical analysis? evidence from singapore stock market,” Applied Financial Economics, vol. 13, no. 7, pp. 543–551, 2003. [4] Friedman and M. Milton, Essays in positive economics. University of Chicago Press, 1953. [5] B. G. Malkiel and E. F. Fama, “Efficient capital markets: A review of theory and empirical work,” The journal of Finance, vol. 25, no. 2, pp. 383–417, 1970. [6] R. Roll, “A Mean/Variance Analysis of Tracking Error,” JPM, vol. 18, pp. 13–22, July 1992. [7] J. Beasley, N. Meade, and T.-J. Chang, “An evolutionary heuristic for the index trackingproblem,” European Journal of Operational Research, vol.148, pp.621–643, Aug. 2003. [8] N. Canakgoz and J. Beasley, “Mixed-integer programming approaches for index tracking and enhanced indexation,” European Journal of Operational Research, vol. 196, pp. 384–399, July 2009. [9] G.GuastarobaandM.Speranza, “KernelSearch: Anapplicationtotheindextracking problem,” European Journal of Operational Research, vol. 217, pp. 54–68, Feb. 2012. [10] C. Filippi, G. Guastaroba, and M. Speranza, “A heuristic framework for the biobjectiveenhancedindextrackingproblem,”Omega,vol.65,pp.122–137,Dec.2016.
35
[11] F. García, F. Guijarro, and J. Oliver, “Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics,” Neural Comput & Applic, vol. 30, pp. 2625–2641, Oct. 2018. [12] K. Benidis, Y. Feng, and D. P. Palomar, “Sparse Portfolios for High-Dimensional Financial Index Tracking,” IEEE Trans. Signal Process., vol. 66, pp. 155–170, Jan. 2018. [13] O. Strub and P. Baumann, “Optimal construction and rebalancing of index-tracking portfolios,” European Journal of Operational Research, vol. 264, pp. 370–387, Jan. 2018. [14] S.Browne,“Beatingamovingtarget: Optimalportfoliostrategiesforoutperforming a stochastic benchmark,” Finance and Stochastics, vol. 3, pp. 275–294, May 1999. [15] V.DeMiguel, L.Garlappi, F.J.Nogales, andR.Uppal, “AGeneralizedApproachto Portfolio Optimization: Improving Performance By Constraining Portfolio Norms,” p. 67. [16] D. D. Yao, S. Zhang, and X. Y. Zhou, “Tracking a Financial Benchmark Using a Few Assets,” Operations Research, vol. 54, pp. 232–246, Apr. 2006. Publisher: INFORMS. [17] N. C. P. Edirisinghe, “Index-tracking optimal portfolio selection,” Quantitative Finance Letters, vol. 1, pp. 16–20, Dec. 2013. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/21649502.2013.803789. [18] W. L. de Paulo, E. M. de Oliveira, and O. L. do Valle Costa, “Enhanced index tracking optimal portfolio selection,” Finance Research Letters, vol. 16, pp. 93–102, Feb. 2016. [19] H.-A. Hsu, Target index tracing through portfolio optimization. PhD thesis, 國立中 央大學, July 2019. [20] I.KaratzasandS.E.Shreve,“Brownianmotion,”inBrownianMotionandStochastic Calculus, pp. 47–127, Springer, 1998. [21] T. Björk, Arbitrage theory in continuous time. Oxford university press, 2009. [22] L.-H. Sun, “Systemic risk and interbank lending,” Journal of Optimization Theory and Applications, vol. 179, no. 2, pp. 400–424, 2018. [23] D. J. Higham, “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM review, vol. 43, no. 3, pp. 525–546, 2001. [24] G. Casella and R. L. Berger, Statistical inference, vol. 2. Duxbury Pacific Grove, CA, 2002.